{"title":"将平面接触流形推广到更高维度","authors":"Bahar Acu, John B. Etnyre, Burak Ozbagci","doi":"10.4310/jsg.2023.v21.n4.a2","DOIUrl":null,"url":null,"abstract":"Iterated planar contact manifolds are a generalization of three dimensional planar contact manifolds to higher dimensions.We study some basic topological properties of iterated planar contact manifolds and discuss several examples and constructions showing that many contact manifolds are iterated planar. We also observe that for any odd integer $m \\gt 3$, any finitely presented group can be realized as the fundamental group of some iterated planar contact manifold of dimension $m$. Moreover, we introduce another generalization of three dimensional planar contact manifolds that we call projective. Finally, building symplectic cobordisms via open books, we show that some projective contact manifolds admit explicit symplectic caps.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"9 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalizations of planar contact manifolds to higher dimensions\",\"authors\":\"Bahar Acu, John B. Etnyre, Burak Ozbagci\",\"doi\":\"10.4310/jsg.2023.v21.n4.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iterated planar contact manifolds are a generalization of three dimensional planar contact manifolds to higher dimensions.We study some basic topological properties of iterated planar contact manifolds and discuss several examples and constructions showing that many contact manifolds are iterated planar. We also observe that for any odd integer $m \\\\gt 3$, any finitely presented group can be realized as the fundamental group of some iterated planar contact manifold of dimension $m$. Moreover, we introduce another generalization of three dimensional planar contact manifolds that we call projective. Finally, building symplectic cobordisms via open books, we show that some projective contact manifolds admit explicit symplectic caps.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2023.v21.n4.a2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2023.v21.n4.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Generalizations of planar contact manifolds to higher dimensions
Iterated planar contact manifolds are a generalization of three dimensional planar contact manifolds to higher dimensions.We study some basic topological properties of iterated planar contact manifolds and discuss several examples and constructions showing that many contact manifolds are iterated planar. We also observe that for any odd integer $m \gt 3$, any finitely presented group can be realized as the fundamental group of some iterated planar contact manifold of dimension $m$. Moreover, we introduce another generalization of three dimensional planar contact manifolds that we call projective. Finally, building symplectic cobordisms via open books, we show that some projective contact manifolds admit explicit symplectic caps.
期刊介绍:
Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.