光子灯笼波前传感器的实时实验演示

Jonathan Lin, Michael P. Fitzgerald, Yinzi Xin, Yoo Jung Kim, O. Guyon, Barnaby Norris, C. Betters, Sergio Leon-Saval, K. Ahn, V. Deo, J. Lozi, S. Vievard, Daniel M. Levinstein, S. Sallum, Nemanja Jovanovic
{"title":"光子灯笼波前传感器的实时实验演示","authors":"Jonathan Lin, Michael P. Fitzgerald, Yinzi Xin, Yoo Jung Kim, O. Guyon, Barnaby Norris, C. Betters, Sergio Leon-Saval, K. Ahn, V. Deo, J. Lozi, S. Vievard, Daniel M. Levinstein, S. Sallum, Nemanja Jovanovic","doi":"10.3847/2041-8213/ad12a4","DOIUrl":null,"url":null,"abstract":"The direct imaging of an Earth-like exoplanet will require sub-nanometric wave-front control across large light-collecting apertures to reject host starlight and detect the faint planetary signal. Current adaptive optics systems, which use wave-front sensors that reimage the telescope pupil, face two challenges that prevent this level of control: non-common-path aberrations, caused by differences between the sensing and science arms of the instrument; and petaling modes: discontinuous phase aberrations caused by pupil fragmentation, especially relevant for the upcoming 30 m class telescopes. Such aberrations drastically impact the capabilities of high-contrast instruments. To address these issues, we can add a second-stage wave-front sensor to the science focal plane. One promising architecture uses the photonic lantern (PL): a waveguide that efficiently couples aberrated light into single-mode fibers (SMFs). In turn, SMF-confined light can be stably injected into high-resolution spectrographs, enabling direct exoplanet characterization and precision radial velocity measurements; simultaneously, the PL can be used for focal-plane wave-front sensing. We present a real-time experimental demonstration of the PL wave-front sensor on the Subaru/SCExAO testbed. Our system is stable out to around ±400 nm of low-order Zernike wave-front error and can correct petaling modes. When injecting ∼30 nm rms of low-order time-varying error, we achieve ∼10× rejection at 1 s timescales; further refinements to the control law and lantern fabrication process should make sub-nanometric wave-front control possible. In the future, novel sensors like the PL wave-front sensor may prove to be critical in resolving the wave-front control challenges posed by exoplanet direct imaging.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Experimental Demonstrations of a Photonic Lantern Wave-front Sensor\",\"authors\":\"Jonathan Lin, Michael P. Fitzgerald, Yinzi Xin, Yoo Jung Kim, O. Guyon, Barnaby Norris, C. Betters, Sergio Leon-Saval, K. Ahn, V. Deo, J. Lozi, S. Vievard, Daniel M. Levinstein, S. Sallum, Nemanja Jovanovic\",\"doi\":\"10.3847/2041-8213/ad12a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The direct imaging of an Earth-like exoplanet will require sub-nanometric wave-front control across large light-collecting apertures to reject host starlight and detect the faint planetary signal. Current adaptive optics systems, which use wave-front sensors that reimage the telescope pupil, face two challenges that prevent this level of control: non-common-path aberrations, caused by differences between the sensing and science arms of the instrument; and petaling modes: discontinuous phase aberrations caused by pupil fragmentation, especially relevant for the upcoming 30 m class telescopes. Such aberrations drastically impact the capabilities of high-contrast instruments. To address these issues, we can add a second-stage wave-front sensor to the science focal plane. One promising architecture uses the photonic lantern (PL): a waveguide that efficiently couples aberrated light into single-mode fibers (SMFs). In turn, SMF-confined light can be stably injected into high-resolution spectrographs, enabling direct exoplanet characterization and precision radial velocity measurements; simultaneously, the PL can be used for focal-plane wave-front sensing. We present a real-time experimental demonstration of the PL wave-front sensor on the Subaru/SCExAO testbed. Our system is stable out to around ±400 nm of low-order Zernike wave-front error and can correct petaling modes. When injecting ∼30 nm rms of low-order time-varying error, we achieve ∼10× rejection at 1 s timescales; further refinements to the control law and lantern fabrication process should make sub-nanometric wave-front control possible. In the future, novel sensors like the PL wave-front sensor may prove to be critical in resolving the wave-front control challenges posed by exoplanet direct imaging.\",\"PeriodicalId\":179976,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ad12a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad12a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要对类似地球的系外行星进行直接成像,就需要在大的集光孔径上进行亚纳米级的波前控制,以阻挡宿主星光并探测到微弱的行星信号。目前的自适应光学系统使用波前传感器对望远镜瞳孔进行重新成像,但它面临两个挑战,无法实现这种控制水平:一是非共轨像差,由仪器的传感臂和科学臂之间的差异造成;二是瓣化模式:由瞳孔碎裂造成的不连续相位像差,这与即将推出的 30 米级望远镜尤为相关。这些像差严重影响了高对比度仪器的性能。为了解决这些问题,我们可以在科学焦平面上增加一个二级波前传感器。一种很有前景的结构是使用光子灯笼(PL):一种能将畸变光有效耦合到单模光纤(SMF)的波导。反过来,经单模光纤(SMF)约束的光可以稳定地注入高分辨率光谱仪,从而实现系外行星的直接表征和精确径向速度测量;同时,光子灯笼还可用于焦平面波前传感。我们在 Subaru/SCExAO 测试平台上对 PL 波前传感器进行了实时实验演示。我们的系统在±400 nm左右的低阶Zernike波前误差范围内都很稳定,并能校正翻转模式。当注入 ∼30 nm rms 的低阶时变误差时,我们在 1 秒的时间尺度上实现了 ∼10× 的抑制;对控制法则和灯笼制造工艺的进一步改进将使亚纳米波前控制成为可能。未来,像 PL 波前传感器这样的新型传感器可能会被证明是解决系外行星直接成像所带来的波前控制挑战的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Experimental Demonstrations of a Photonic Lantern Wave-front Sensor
The direct imaging of an Earth-like exoplanet will require sub-nanometric wave-front control across large light-collecting apertures to reject host starlight and detect the faint planetary signal. Current adaptive optics systems, which use wave-front sensors that reimage the telescope pupil, face two challenges that prevent this level of control: non-common-path aberrations, caused by differences between the sensing and science arms of the instrument; and petaling modes: discontinuous phase aberrations caused by pupil fragmentation, especially relevant for the upcoming 30 m class telescopes. Such aberrations drastically impact the capabilities of high-contrast instruments. To address these issues, we can add a second-stage wave-front sensor to the science focal plane. One promising architecture uses the photonic lantern (PL): a waveguide that efficiently couples aberrated light into single-mode fibers (SMFs). In turn, SMF-confined light can be stably injected into high-resolution spectrographs, enabling direct exoplanet characterization and precision radial velocity measurements; simultaneously, the PL can be used for focal-plane wave-front sensing. We present a real-time experimental demonstration of the PL wave-front sensor on the Subaru/SCExAO testbed. Our system is stable out to around ±400 nm of low-order Zernike wave-front error and can correct petaling modes. When injecting ∼30 nm rms of low-order time-varying error, we achieve ∼10× rejection at 1 s timescales; further refinements to the control law and lantern fabrication process should make sub-nanometric wave-front control possible. In the future, novel sensors like the PL wave-front sensor may prove to be critical in resolving the wave-front control challenges posed by exoplanet direct imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信