演化代数的皮尔斯分解

IF 0.9 3区 数学 Q2 MATHEMATICS
I. Paniello
{"title":"演化代数的皮尔斯分解","authors":"I. Paniello","doi":"10.1515/ms-2023-0103","DOIUrl":null,"url":null,"abstract":"ABSTRACT We address Peirce decompositions for evolution algebras at idempotent elements contained in the associative nucleus of the evolution algebras. If the idempotent elements are natural vectors, the requirement of being nuclear is then proved to be equivalent to the evolution algebra to be baric. A description of baric evolution algebras is also provided.","PeriodicalId":18282,"journal":{"name":"Mathematica Slovaca","volume":"659 2","pages":"1423 - 1434"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peirce Decompositions for Evolution Algebras\",\"authors\":\"I. Paniello\",\"doi\":\"10.1515/ms-2023-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We address Peirce decompositions for evolution algebras at idempotent elements contained in the associative nucleus of the evolution algebras. If the idempotent elements are natural vectors, the requirement of being nuclear is then proved to be equivalent to the evolution algebra to be baric. A description of baric evolution algebras is also provided.\",\"PeriodicalId\":18282,\"journal\":{\"name\":\"Mathematica Slovaca\",\"volume\":\"659 2\",\"pages\":\"1423 - 1434\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Slovaca\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2023-0103\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Slovaca","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2023-0103","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们讨论了演化代数关联核中包含的幂等元素的 Peirce 分解。如果幂等元素是自然向量,那么证明了核的要求等同于进化代数是巴利的。此外,还提供了对巴利演化代数的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peirce Decompositions for Evolution Algebras
ABSTRACT We address Peirce decompositions for evolution algebras at idempotent elements contained in the associative nucleus of the evolution algebras. If the idempotent elements are natural vectors, the requirement of being nuclear is then proved to be equivalent to the evolution algebra to be baric. A description of baric evolution algebras is also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica Slovaca
Mathematica Slovaca 数学-数学
CiteScore
2.10
自引率
6.20%
发文量
74
审稿时长
6-12 weeks
期刊介绍: Mathematica Slovaca, the oldest and best mathematical journal in Slovakia, was founded in 1951 at the Mathematical Institute of the Slovak Academy of Science, Bratislava. It covers practically all mathematical areas. As a respectful international mathematical journal, it publishes only highly nontrivial original articles with complete proofs by assuring a high quality reviewing process. Its reputation was approved by many outstanding mathematicians who already contributed to Math. Slovaca. It makes bridges among mathematics, physics, soft computing, cryptography, biology, economy, measuring, etc.  The Journal publishes original articles with complete proofs. Besides short notes the journal publishes also surveys as well as some issues are focusing on a theme of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信