根据塞尔维亚荷斯坦-弗里斯兰牛的表型和血统数据,应用机器学习估算产奶量

L. Tarjan, I. Šenk, Doni Pracner, Ljuba Štrbac, Momčilo Šaran, Mirko Ivković, N. Dedovic
{"title":"根据塞尔维亚荷斯坦-弗里斯兰牛的表型和血统数据,应用机器学习估算产奶量","authors":"L. Tarjan, I. Šenk, Doni Pracner, Ljuba Štrbac, Momčilo Šaran, Mirko Ivković, N. Dedovic","doi":"10.2478/contagri-2023-0024","DOIUrl":null,"url":null,"abstract":"Summary This paper presents a deep neural network (DNN) approach designed to estimate the milk yield of Holstein-Friesian cattle. The DNN comprised stacked dense (fully connected) layers, each hidden layer followed by a dropout layer. Various configurations of the DNN were tested, incorporating 2 and 3 hidden layers containing 8 to 54 neurons. The experiment involved testing the DNN with different activation functions such as the sigmoid, tanh, and rectified linear unit (ReLU). The dropout rates ranging from 0 to 0.3 were employed, with the output layer using a linear activation function. The DNN models were trained using the Adam, SGD, and RMSprop optimizers, with the root mean square error serving as the loss metric. The training dataset comprised information from a unique database containing records of dairy cows in the Republic of Serbia, totaling 3,406 cows. The input parameters (a total of 27) for the DNN included breeding and milk yield data from the cow’s mother, as well as the father’s ID, whereas the output parameters (a total of 8) consisted of milk yield parameters (a total of 3) and breeding parameters of the cow (a total of 5). Training iterations were conducted using a batch size of 8 over 500, 1000, and 5000 epochs.","PeriodicalId":221412,"journal":{"name":"Contemporary Agriculture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Machine Learning in Estimating Milk Yield According to the Phenotypic and Pedigree Data of Holstein-Friesian Cattle in Serbia\",\"authors\":\"L. Tarjan, I. Šenk, Doni Pracner, Ljuba Štrbac, Momčilo Šaran, Mirko Ivković, N. Dedovic\",\"doi\":\"10.2478/contagri-2023-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary This paper presents a deep neural network (DNN) approach designed to estimate the milk yield of Holstein-Friesian cattle. The DNN comprised stacked dense (fully connected) layers, each hidden layer followed by a dropout layer. Various configurations of the DNN were tested, incorporating 2 and 3 hidden layers containing 8 to 54 neurons. The experiment involved testing the DNN with different activation functions such as the sigmoid, tanh, and rectified linear unit (ReLU). The dropout rates ranging from 0 to 0.3 were employed, with the output layer using a linear activation function. The DNN models were trained using the Adam, SGD, and RMSprop optimizers, with the root mean square error serving as the loss metric. The training dataset comprised information from a unique database containing records of dairy cows in the Republic of Serbia, totaling 3,406 cows. The input parameters (a total of 27) for the DNN included breeding and milk yield data from the cow’s mother, as well as the father’s ID, whereas the output parameters (a total of 8) consisted of milk yield parameters (a total of 3) and breeding parameters of the cow (a total of 5). Training iterations were conducted using a batch size of 8 over 500, 1000, and 5000 epochs.\",\"PeriodicalId\":221412,\"journal\":{\"name\":\"Contemporary Agriculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/contagri-2023-0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/contagri-2023-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文介绍了一种深度神经网络(DNN)方法,旨在估算荷斯坦-弗里斯兰牛的产奶量。DNN 由堆叠的密集(全连接)层组成,每个隐藏层后都有一个剔除层。对 DNN 的各种配置进行了测试,包括包含 8 至 54 个神经元的 2 和 3 个隐藏层。实验还测试了 DNN 的不同激活函数,如 sigmoid、tanh 和整流线性单元(ReLU)。在输出层使用线性激活函数时,采用了 0 至 0.3 的辍学率。DNN 模型使用 Adam、SGD 和 RMSprop 优化器进行训练,损失指标为均方根误差。训练数据集由一个独特数据库中的信息组成,该数据库包含塞尔维亚共和国奶牛的记录,共计 3406 头奶牛。DNN 的输入参数(共 27 个)包括奶牛母亲的繁殖和产奶量数据以及奶牛父亲的 ID,而输出参数(共 8 个)包括产奶量参数(共 3 个)和奶牛的繁殖参数(共 5 个)。训练迭代采用批量大小为 8 的 500、1000 和 5000 次历时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Machine Learning in Estimating Milk Yield According to the Phenotypic and Pedigree Data of Holstein-Friesian Cattle in Serbia
Summary This paper presents a deep neural network (DNN) approach designed to estimate the milk yield of Holstein-Friesian cattle. The DNN comprised stacked dense (fully connected) layers, each hidden layer followed by a dropout layer. Various configurations of the DNN were tested, incorporating 2 and 3 hidden layers containing 8 to 54 neurons. The experiment involved testing the DNN with different activation functions such as the sigmoid, tanh, and rectified linear unit (ReLU). The dropout rates ranging from 0 to 0.3 were employed, with the output layer using a linear activation function. The DNN models were trained using the Adam, SGD, and RMSprop optimizers, with the root mean square error serving as the loss metric. The training dataset comprised information from a unique database containing records of dairy cows in the Republic of Serbia, totaling 3,406 cows. The input parameters (a total of 27) for the DNN included breeding and milk yield data from the cow’s mother, as well as the father’s ID, whereas the output parameters (a total of 8) consisted of milk yield parameters (a total of 3) and breeding parameters of the cow (a total of 5). Training iterations were conducted using a batch size of 8 over 500, 1000, and 5000 epochs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信