{"title":"动态水库规则曲线--其创建和利用","authors":"Nesa Ilich","doi":"10.1016/j.hydroa.2023.100166","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a methodology for the creation of dynamic reservoir rule curves on the basis of the results of implicit stochastic optimization coupled with optimized demand hedging embedded as constraints to optimization. The novelty of the method is a dynamic rule curve that always starts from the current storage level and projects a range of anticipated target levels in the immediate future based on the statistical analyses of the results of implicit stochastic optimization. The method is particularly useful in dry years when storage is not completely filled at the end of wet seasons. Such situations cannot be addressed with standard traditional rule curves, thus causing reservoir operators to base their decisions on mere judgment. The proposed method can be helpful in such situations. The method has been demonstrated on the Tawa reservoir in the Narmada River Basin in India.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"22 ","pages":"Article 100166"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915523000202/pdfft?md5=bf7c35088f989619546d164e0ec600bf&pid=1-s2.0-S2589915523000202-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamic reservoir rule curves – Their creation and utilization\",\"authors\":\"Nesa Ilich\",\"doi\":\"10.1016/j.hydroa.2023.100166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a methodology for the creation of dynamic reservoir rule curves on the basis of the results of implicit stochastic optimization coupled with optimized demand hedging embedded as constraints to optimization. The novelty of the method is a dynamic rule curve that always starts from the current storage level and projects a range of anticipated target levels in the immediate future based on the statistical analyses of the results of implicit stochastic optimization. The method is particularly useful in dry years when storage is not completely filled at the end of wet seasons. Such situations cannot be addressed with standard traditional rule curves, thus causing reservoir operators to base their decisions on mere judgment. The proposed method can be helpful in such situations. The method has been demonstrated on the Tawa reservoir in the Narmada River Basin in India.</p></div>\",\"PeriodicalId\":36948,\"journal\":{\"name\":\"Journal of Hydrology X\",\"volume\":\"22 \",\"pages\":\"Article 100166\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589915523000202/pdfft?md5=bf7c35088f989619546d164e0ec600bf&pid=1-s2.0-S2589915523000202-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589915523000202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915523000202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic reservoir rule curves – Their creation and utilization
This paper presents a methodology for the creation of dynamic reservoir rule curves on the basis of the results of implicit stochastic optimization coupled with optimized demand hedging embedded as constraints to optimization. The novelty of the method is a dynamic rule curve that always starts from the current storage level and projects a range of anticipated target levels in the immediate future based on the statistical analyses of the results of implicit stochastic optimization. The method is particularly useful in dry years when storage is not completely filled at the end of wet seasons. Such situations cannot be addressed with standard traditional rule curves, thus causing reservoir operators to base their decisions on mere judgment. The proposed method can be helpful in such situations. The method has been demonstrated on the Tawa reservoir in the Narmada River Basin in India.