Prenex 标准化和公式的分层分类

IF 0.3 4区 数学 Q1 Arts and Humanities
Makoto Fujiwara, Taishi Kurahashi
{"title":"Prenex 标准化和公式的分层分类","authors":"Makoto Fujiwara,&nbsp;Taishi Kurahashi","doi":"10.1007/s00153-023-00899-x","DOIUrl":null,"url":null,"abstract":"<div><p>Akama et al. [1] introduced a hierarchical classification of first-order formulas for a hierarchical prenex normal form theorem in semi-classical arithmetic. In this paper, we give a justification for the hierarchical classification in a general context of first-order theories. To this end, we first formalize the standard transformation procedure for prenex normalization. Then we show that the classes <span>\\(\\textrm{E}_k\\)</span> and <span>\\(\\textrm{U}_k\\)</span> introduced in [1] are exactly the classes induced by <span>\\(\\Sigma _k\\)</span> and <span>\\(\\Pi _k\\)</span> respectively via the transformation procedure in any first-order theory.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prenex normalization and the hierarchical classification of formulas\",\"authors\":\"Makoto Fujiwara,&nbsp;Taishi Kurahashi\",\"doi\":\"10.1007/s00153-023-00899-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Akama et al. [1] introduced a hierarchical classification of first-order formulas for a hierarchical prenex normal form theorem in semi-classical arithmetic. In this paper, we give a justification for the hierarchical classification in a general context of first-order theories. To this end, we first formalize the standard transformation procedure for prenex normalization. Then we show that the classes <span>\\\\(\\\\textrm{E}_k\\\\)</span> and <span>\\\\(\\\\textrm{U}_k\\\\)</span> introduced in [1] are exactly the classes induced by <span>\\\\(\\\\Sigma _k\\\\)</span> and <span>\\\\(\\\\Pi _k\\\\)</span> respectively via the transformation procedure in any first-order theory.</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-023-00899-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-023-00899-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

Akama 等人[1]针对半经典算术中的分层前附件正则表达式定理,提出了一阶公式的分层分类法。在本文中,我们在一阶理论的一般背景下给出了分层分类的理由。为此,我们首先形式化了前附件正常化的标准转换过程。然后,我们证明[1]中引入的类\(textrm{E}_k\) 和\(textrm{U}_k\)正是在任何一阶理论中通过转换过程分别由\(\Sigma _k\) 和\(\Pi _k\)引起的类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prenex normalization and the hierarchical classification of formulas

Prenex normalization and the hierarchical classification of formulas

Prenex normalization and the hierarchical classification of formulas

Akama et al. [1] introduced a hierarchical classification of first-order formulas for a hierarchical prenex normal form theorem in semi-classical arithmetic. In this paper, we give a justification for the hierarchical classification in a general context of first-order theories. To this end, we first formalize the standard transformation procedure for prenex normalization. Then we show that the classes \(\textrm{E}_k\) and \(\textrm{U}_k\) introduced in [1] are exactly the classes induced by \(\Sigma _k\) and \(\Pi _k\) respectively via the transformation procedure in any first-order theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信