Zhengyang Sun, Junfeng Yang, Lei Zhang, Tianxing Wang, Ruolin Liu, Kezhu Song
{"title":"分布式数据采集平台中的通用节点识别和路由算法:D-Matrix","authors":"Zhengyang Sun, Junfeng Yang, Lei Zhang, Tianxing Wang, Ruolin Liu, Kezhu Song","doi":"10.1088/1748-0221/18/12/P12012","DOIUrl":null,"url":null,"abstract":"Data acquisition (DAQ) systems are vital components in large-scale physics experiments. For communication, control and tracking purposes, all system components must be unambiguously identified. D-Matrix, as a generic distributed stream processing DAQ platform, accommodates various device connection methods, including networking, PCIe bus, point-to-point optical fiber links, etc. Although there are mature node identification solutions for each connection method individually, the uniform solution applicable to all connection methods remains crucial in a generic DAQ platform. D-Matrix abstracts a unified Multiple Point-to-Point transmission model (MPP model), supporting various physical connection methods and enabling multiple communication channels on a single physical link. Referring to the tree universal address system, a generic automatic node identification algorithm is proposed based on the MPP model. With simple configuration, this algorithm enables automatic node traversal, yielding a routing-based identification result that supports clustering and hierarchical node management requirements common in large-scale physics experiments. This paper explains the details of the algorithm and presents an example of the DAQ system based on the algorithm.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"299 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generic node identification and routing algorithm in a distributed data acquisition platform: D-Matrix\",\"authors\":\"Zhengyang Sun, Junfeng Yang, Lei Zhang, Tianxing Wang, Ruolin Liu, Kezhu Song\",\"doi\":\"10.1088/1748-0221/18/12/P12012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data acquisition (DAQ) systems are vital components in large-scale physics experiments. For communication, control and tracking purposes, all system components must be unambiguously identified. D-Matrix, as a generic distributed stream processing DAQ platform, accommodates various device connection methods, including networking, PCIe bus, point-to-point optical fiber links, etc. Although there are mature node identification solutions for each connection method individually, the uniform solution applicable to all connection methods remains crucial in a generic DAQ platform. D-Matrix abstracts a unified Multiple Point-to-Point transmission model (MPP model), supporting various physical connection methods and enabling multiple communication channels on a single physical link. Referring to the tree universal address system, a generic automatic node identification algorithm is proposed based on the MPP model. With simple configuration, this algorithm enables automatic node traversal, yielding a routing-based identification result that supports clustering and hierarchical node management requirements common in large-scale physics experiments. This paper explains the details of the algorithm and presents an example of the DAQ system based on the algorithm.\",\"PeriodicalId\":16184,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":\"299 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/18/12/P12012\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/12/P12012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
A generic node identification and routing algorithm in a distributed data acquisition platform: D-Matrix
Data acquisition (DAQ) systems are vital components in large-scale physics experiments. For communication, control and tracking purposes, all system components must be unambiguously identified. D-Matrix, as a generic distributed stream processing DAQ platform, accommodates various device connection methods, including networking, PCIe bus, point-to-point optical fiber links, etc. Although there are mature node identification solutions for each connection method individually, the uniform solution applicable to all connection methods remains crucial in a generic DAQ platform. D-Matrix abstracts a unified Multiple Point-to-Point transmission model (MPP model), supporting various physical connection methods and enabling multiple communication channels on a single physical link. Referring to the tree universal address system, a generic automatic node identification algorithm is proposed based on the MPP model. With simple configuration, this algorithm enables automatic node traversal, yielding a routing-based identification result that supports clustering and hierarchical node management requirements common in large-scale physics experiments. This paper explains the details of the algorithm and presents an example of the DAQ system based on the algorithm.
期刊介绍:
Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include.
-Accelerators: concepts, modelling, simulations and sources-
Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons-
Detector physics: concepts, processes, methods, modelling and simulations-
Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics-
Instrumentation and methods for plasma research-
Methods and apparatus for astronomy and astrophysics-
Detectors, methods and apparatus for biomedical applications, life sciences and material research-
Instrumentation and techniques for medical imaging, diagnostics and therapy-
Instrumentation and techniques for dosimetry, monitoring and radiation damage-
Detectors, instrumentation and methods for non-destructive tests (NDT)-
Detector readout concepts, electronics and data acquisition methods-
Algorithms, software and data reduction methods-
Materials and associated technologies, etc.-
Engineering and technical issues.
JINST also includes a section dedicated to technical reports and instrumentation theses.