关于带有积分型源的微分-差分正弦-戈登方程

Pub Date : 2023-12-01 DOI:10.1515/ms-2023-0108
B. Babajanov, Michal Fečkan, Aygul Babadjanova
{"title":"关于带有积分型源的微分-差分正弦-戈登方程","authors":"B. Babajanov, Michal Fečkan, Aygul Babadjanova","doi":"10.1515/ms-2023-0108","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this work, we study the integration of the differential-difference sine-Gordon equation with an integral type source. We deduce the time performance of the scattering data of the spectral problem which is associated with the discrete sine-Gordon equation. Using the inverse scattering method, we integrate the Cauchy problem for the differential-difference sine-Gordon equation with the integral type source in the class of the rapidly decreasing functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Differential-Difference Sine-Gordon Equation with an Integral Type Source\",\"authors\":\"B. Babajanov, Michal Fečkan, Aygul Babadjanova\",\"doi\":\"10.1515/ms-2023-0108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this work, we study the integration of the differential-difference sine-Gordon equation with an integral type source. We deduce the time performance of the scattering data of the spectral problem which is associated with the discrete sine-Gordon equation. Using the inverse scattering method, we integrate the Cauchy problem for the differential-difference sine-Gordon equation with the integral type source in the class of the rapidly decreasing functions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2023-0108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2023-0108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在这项工作中,我们研究了带有积分型源的微分-差分正弦-戈登方程的积分问题。我们推导了与离散正弦-戈登方程相关的谱问题的散射数据的时间性能。利用反散射方法,我们对微分-差分正弦-戈登方程的 Cauchy 问题进行了积分型源的快速递减函数类积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Differential-Difference Sine-Gordon Equation with an Integral Type Source
ABSTRACT In this work, we study the integration of the differential-difference sine-Gordon equation with an integral type source. We deduce the time performance of the scattering data of the spectral problem which is associated with the discrete sine-Gordon equation. Using the inverse scattering method, we integrate the Cauchy problem for the differential-difference sine-Gordon equation with the integral type source in the class of the rapidly decreasing functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信