Jyoti V. Patil , Sawanta S. Mali , Sachin R. Rondiya , Nelson Y. Dzade , Chang Kook Hong
{"title":"基于 FA0.15MA0.85PbI3 的双层分级同相结有机-无机混合型过氧化物太阳能电池的效率突破 22","authors":"Jyoti V. Patil , Sawanta S. Mali , Sachin R. Rondiya , Nelson Y. Dzade , Chang Kook Hong","doi":"10.1016/j.progsolidstchem.2023.100437","DOIUrl":null,"url":null,"abstract":"<div><p><span>Making highly efficient and stable perovskite solar cells (PSCs) are often based on the processing techniques, band gap of the material and effective interface charge separation. The efficiency of PSCs can be enhanced through several methods including the utilization of a solar-friendly absorber, interface passivation and the implementation of multi-junction spectrally matched absorbers or bilayered phase homojunction (BPHJ) consisting of identical absorbers. Here, we demonstrated BPHJ concept by stacking identical compositions of highly efficient and stable FA</span><sub>0.15</sub>MA<sub>0.85</sub>PbI<sub>3</sub><span> perovskite<span> absorbers adopting solution process (SP) and thermal evaporation (TEV) techniques. We successfully achieved FA</span></span><sub>0.15</sub>MA<sub>0.85</sub>PbI<sub>3</sub> (SP)/FA<sub>0.15</sub>MA<sub>0.85</sub>PbI<sub>3</sub>-(TEV) based BPHJ normal n-i-p devices, which significantly crossing 22.</p><p>% PCE. These improvement stems from effective deposition method for achieving high-quality FA<sub>0.15</sub>MA<sub>0.85</sub>PbI<sub>3</sub>-based BPHJ enabling smooth charge transfer at the interfaces. The resulting BPHJ-based champion device achieve a 22.13 % PCE and retain >95 % its original efficiency over 1000 hours.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilayered graded phase homojunction FA0.15MA0.85PbI3-based organic-inorganic hybrid perovskite solar cells crossing 22 % efficiency\",\"authors\":\"Jyoti V. Patil , Sawanta S. Mali , Sachin R. Rondiya , Nelson Y. Dzade , Chang Kook Hong\",\"doi\":\"10.1016/j.progsolidstchem.2023.100437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Making highly efficient and stable perovskite solar cells (PSCs) are often based on the processing techniques, band gap of the material and effective interface charge separation. The efficiency of PSCs can be enhanced through several methods including the utilization of a solar-friendly absorber, interface passivation and the implementation of multi-junction spectrally matched absorbers or bilayered phase homojunction (BPHJ) consisting of identical absorbers. Here, we demonstrated BPHJ concept by stacking identical compositions of highly efficient and stable FA</span><sub>0.15</sub>MA<sub>0.85</sub>PbI<sub>3</sub><span> perovskite<span> absorbers adopting solution process (SP) and thermal evaporation (TEV) techniques. We successfully achieved FA</span></span><sub>0.15</sub>MA<sub>0.85</sub>PbI<sub>3</sub> (SP)/FA<sub>0.15</sub>MA<sub>0.85</sub>PbI<sub>3</sub>-(TEV) based BPHJ normal n-i-p devices, which significantly crossing 22.</p><p>% PCE. These improvement stems from effective deposition method for achieving high-quality FA<sub>0.15</sub>MA<sub>0.85</sub>PbI<sub>3</sub>-based BPHJ enabling smooth charge transfer at the interfaces. The resulting BPHJ-based champion device achieve a 22.13 % PCE and retain >95 % its original efficiency over 1000 hours.</p></div>\",\"PeriodicalId\":415,\"journal\":{\"name\":\"Progress in Solid State Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079678623000481\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678623000481","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Making highly efficient and stable perovskite solar cells (PSCs) are often based on the processing techniques, band gap of the material and effective interface charge separation. The efficiency of PSCs can be enhanced through several methods including the utilization of a solar-friendly absorber, interface passivation and the implementation of multi-junction spectrally matched absorbers or bilayered phase homojunction (BPHJ) consisting of identical absorbers. Here, we demonstrated BPHJ concept by stacking identical compositions of highly efficient and stable FA0.15MA0.85PbI3 perovskite absorbers adopting solution process (SP) and thermal evaporation (TEV) techniques. We successfully achieved FA0.15MA0.85PbI3 (SP)/FA0.15MA0.85PbI3-(TEV) based BPHJ normal n-i-p devices, which significantly crossing 22.
% PCE. These improvement stems from effective deposition method for achieving high-quality FA0.15MA0.85PbI3-based BPHJ enabling smooth charge transfer at the interfaces. The resulting BPHJ-based champion device achieve a 22.13 % PCE and retain >95 % its original efficiency over 1000 hours.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.