在图书馆实施流行聊天机器人框架(Dialog flow、微软机器人框架、IBM Watson Assistant 和 Rasa)的标准选择和比较分析:系统性文献综述

Iwan Permadi
{"title":"在图书馆实施流行聊天机器人框架(Dialog flow、微软机器人框架、IBM Watson Assistant 和 Rasa)的标准选择和比较分析:系统性文献综述","authors":"Iwan Permadi","doi":"10.20473/jpua.v13i2.2023.94-103","DOIUrl":null,"url":null,"abstract":"\n\n\n\nABSTRACT\nChatbots are increasingly popular in various fields, including in libraries, to improve services and interactions with users. In choosing a chatbot for libraries, proper criteria are needed. Some common chatbot frameworks are Dialogflow, Microsoft Bot Framework, IBM Watson Assistant, and Rasa, which have advantages and disadvantages in the library context.\nThis research conducts a systematic literature review on the selection criteria and comparison of popular chatbot frameworks such as Dialogflow, Microsoft Bot Framework, IBM Watson Assistant, and Rasa in library implementation.\nThe research method used a systematic literature review from sources such as IEEE, Proquest, and ScienceDirect. The keywords used were (\"Chatbot\" OR \"Bot\" OR \"Conversational agent\" OR \"Virtual assistant\") AND (\"Dialogflow\" OR \"IBM Watson Assistant\" OR \"Microsoft Bot Framework\" OR \"Rasa\").\nThe results show that the criteria in chatbot selection include Natural Language Understanding (NLU) pipeline customization capabilities, ease of use, integration with Machine Learning and Natural Language Processing, integration capabilities with communication channels, natural language understanding capabilities, validation with automated user story extraction systems, flexibility in development, and tools for natural language processing and machine learning.\nAlthough no articles specifically addressing chatbots were found in the library, this research provides an overview of chatbot selection criteria and provides information on the advantages and disadvantages of each chatbot framework as outlined in the results and discussion table.\nIn conclusion, although research questions RQ1 and RQ2 cannot be answered due to the lack of specific articles about chatbots in libraries, this research provides an overview of chatbot selection criteria and can provide an understanding of the advantages and disadvantages of existing chatbot frameworks...\n \n\nABSTRAK\nChatbot semakin populer di berbagai bidang, termasuk di perpustakaan, untuk meningkatkan layanan dan interaksi dengan pengguna. Dalam memilih chatbot untuk perpustakaan, kriteria yang tepat diperlukan. Beberapa framework chatbot umum adalah Dialogflow, Microsoft Bot Framework, IBM Watson Assistant, dan Rasa, yang memiliki kelebihan dan kekurangan dalam konteks perpustakaan.\nPenelitian ini melakukan tinjauan literatur sistematis tentang kriteria pemilihan dan perbandingan framework chatbot populer seperti Dialogflow, Microsoft Bot Framework, IBM Watson Assistant, dan Rasa dalam implementasi perpustakaan.\nMetode penelitian menggunakan tinjauan literatur sistematis dari sumber seperti IEEE, Proquest, dan ScienceDirect. Kata kunci yang digunakan adalah (\"Chatbot\" OR \"Bot\" OR \"Conversational agent\" OR \"Virtual assistant\") AND (\"Dialogflow\" OR \"IBM Watson Assistant\" OR \"Microsoft Bot Framework\" OR \"Rasa\").\nHasil penelitian menunjukkan bahwa kriteria dalam pemilihan chatbot mencakup kemampuan penyesuaian pipeline Natural Language Understanding (NLU), kemudahan penggunaan, integrasi dengan Machine Learning dan Natural Language Processing, kemampuan integrasi dengan saluran komunikasi, kemampuan memahami bahasa alami, validasi dengan sistem ekstraksi cerita pengguna otomatis, fleksibilitas dalam pengembangan, dan alat untuk pemrosesan bahasa alami dan pembelajaran mesin.\nMeskipun tidak ditemukan artikel yang secara khusus membahas chatbot di perpustakaan, penelitian ini memberikan gambaran umum tentang kriteria pemilihan chatbot dan memberikan informasi tentang kelebihan dan kekurangan masing-masing framework chatbot seperti yang diuraikan dalam tabel hasil dan pembahasan.\nDalam kesimpulannya, meskipun pertanyaan penelitian RQ1 dan RQ2 tidak dapat terjawab karena kurangnya artikel yang spesifik tentang chatbot di perpustakaan, penelitian ini memberikan gambaran umum tentang kriteria pemilihan chatbot dan dapat memberikan pemahaman tentang kelebihan dan kekurangan framework chatbot yang ada.\n \n\n\n\n","PeriodicalId":163297,"journal":{"name":"JPUA: Jurnal Perpustakaan Universitas Airlangga: Media Informasi dan Komunikasi Kepustakawanan","volume":"39 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Criteria Selection and Comparative Analysis of Popular Chatbot Frameworks (Dialog flow, Microsoft Bot Framework, IBM Watson Assistant and Rasa) For Implementation in Libraries: a Systematic Literature Review\",\"authors\":\"Iwan Permadi\",\"doi\":\"10.20473/jpua.v13i2.2023.94-103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\n\\nABSTRACT\\nChatbots are increasingly popular in various fields, including in libraries, to improve services and interactions with users. In choosing a chatbot for libraries, proper criteria are needed. Some common chatbot frameworks are Dialogflow, Microsoft Bot Framework, IBM Watson Assistant, and Rasa, which have advantages and disadvantages in the library context.\\nThis research conducts a systematic literature review on the selection criteria and comparison of popular chatbot frameworks such as Dialogflow, Microsoft Bot Framework, IBM Watson Assistant, and Rasa in library implementation.\\nThe research method used a systematic literature review from sources such as IEEE, Proquest, and ScienceDirect. The keywords used were (\\\"Chatbot\\\" OR \\\"Bot\\\" OR \\\"Conversational agent\\\" OR \\\"Virtual assistant\\\") AND (\\\"Dialogflow\\\" OR \\\"IBM Watson Assistant\\\" OR \\\"Microsoft Bot Framework\\\" OR \\\"Rasa\\\").\\nThe results show that the criteria in chatbot selection include Natural Language Understanding (NLU) pipeline customization capabilities, ease of use, integration with Machine Learning and Natural Language Processing, integration capabilities with communication channels, natural language understanding capabilities, validation with automated user story extraction systems, flexibility in development, and tools for natural language processing and machine learning.\\nAlthough no articles specifically addressing chatbots were found in the library, this research provides an overview of chatbot selection criteria and provides information on the advantages and disadvantages of each chatbot framework as outlined in the results and discussion table.\\nIn conclusion, although research questions RQ1 and RQ2 cannot be answered due to the lack of specific articles about chatbots in libraries, this research provides an overview of chatbot selection criteria and can provide an understanding of the advantages and disadvantages of existing chatbot frameworks...\\n \\n\\nABSTRAK\\nChatbot semakin populer di berbagai bidang, termasuk di perpustakaan, untuk meningkatkan layanan dan interaksi dengan pengguna. Dalam memilih chatbot untuk perpustakaan, kriteria yang tepat diperlukan. Beberapa framework chatbot umum adalah Dialogflow, Microsoft Bot Framework, IBM Watson Assistant, dan Rasa, yang memiliki kelebihan dan kekurangan dalam konteks perpustakaan.\\nPenelitian ini melakukan tinjauan literatur sistematis tentang kriteria pemilihan dan perbandingan framework chatbot populer seperti Dialogflow, Microsoft Bot Framework, IBM Watson Assistant, dan Rasa dalam implementasi perpustakaan.\\nMetode penelitian menggunakan tinjauan literatur sistematis dari sumber seperti IEEE, Proquest, dan ScienceDirect. Kata kunci yang digunakan adalah (\\\"Chatbot\\\" OR \\\"Bot\\\" OR \\\"Conversational agent\\\" OR \\\"Virtual assistant\\\") AND (\\\"Dialogflow\\\" OR \\\"IBM Watson Assistant\\\" OR \\\"Microsoft Bot Framework\\\" OR \\\"Rasa\\\").\\nHasil penelitian menunjukkan bahwa kriteria dalam pemilihan chatbot mencakup kemampuan penyesuaian pipeline Natural Language Understanding (NLU), kemudahan penggunaan, integrasi dengan Machine Learning dan Natural Language Processing, kemampuan integrasi dengan saluran komunikasi, kemampuan memahami bahasa alami, validasi dengan sistem ekstraksi cerita pengguna otomatis, fleksibilitas dalam pengembangan, dan alat untuk pemrosesan bahasa alami dan pembelajaran mesin.\\nMeskipun tidak ditemukan artikel yang secara khusus membahas chatbot di perpustakaan, penelitian ini memberikan gambaran umum tentang kriteria pemilihan chatbot dan memberikan informasi tentang kelebihan dan kekurangan masing-masing framework chatbot seperti yang diuraikan dalam tabel hasil dan pembahasan.\\nDalam kesimpulannya, meskipun pertanyaan penelitian RQ1 dan RQ2 tidak dapat terjawab karena kurangnya artikel yang spesifik tentang chatbot di perpustakaan, penelitian ini memberikan gambaran umum tentang kriteria pemilihan chatbot dan dapat memberikan pemahaman tentang kelebihan dan kekurangan framework chatbot yang ada.\\n \\n\\n\\n\\n\",\"PeriodicalId\":163297,\"journal\":{\"name\":\"JPUA: Jurnal Perpustakaan Universitas Airlangga: Media Informasi dan Komunikasi Kepustakawanan\",\"volume\":\"39 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JPUA: Jurnal Perpustakaan Universitas Airlangga: Media Informasi dan Komunikasi Kepustakawanan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20473/jpua.v13i2.2023.94-103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JPUA: Jurnal Perpustakaan Universitas Airlangga: Media Informasi dan Komunikasi Kepustakawanan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/jpua.v13i2.2023.94-103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ABSTRACTChatbots 在各个领域越来越受欢迎,包括在图书馆,以改善服务和与用户的互动。在为图书馆选择聊天机器人时,需要适当的标准。本研究就 Dialogflow、Microsoft Bot Framework、IBM Watson Assistant 和 Rasa 等流行聊天机器人框架在图书馆实施中的选择标准和比较进行了系统的文献综述。结果显示,聊天机器人的选择标准包括自然语言理解(NLU)管道定制能力、易用性、与机器学习和自然语言处理的集成、与通信渠道的集成能力、自然语言理解能力、与自动用户故事提取系统的验证、开发的灵活性以及自然语言处理和机器学习工具。总之,虽然由于图书馆中缺乏关于聊天机器人的具体文章,研究问题 RQ1 和 RQ2 无法回答,但本研究提供了聊天机器人选择标准的概述,并能让人了解现有聊天机器人框架的优缺点...ABSTRAKChatbot semakin populer di berbagai bidang, termasuk di perpustakaan, untuk meningkatkan layanan dan interaksi dengan pengguna.在使用聊天机器人的过程中,需要遵循一定的标准。世界上的聊天机器人框架包括 Dialogflow、微软机器人框架、IBM Watson Assistant 和 Rasa,它们都能在聊天机器人的应用中提供帮助和支持。该工具可在实施过程中,通过 Dialogflow、Microsoft Bot Framework、IBM Watson Assistant 和 Rasa 等聊天机器人流行框架,了解系统的标准和使用情况。工具可从 IEEE、Proquest 和 ScienceDirect 等数据库中获取系统的文献资料。搜索到的数据包括("聊天机器人 "或 "机器人 "或 "对话代理 "或 "虚拟助理")和("Dialogflow "或 "IBM Watson Assistant "或 "Microsoft Bot Framework "或 "Rasa")。聊天机器人的开发标准包括自然语言理解(NLU)、机器学习和自然语言处理的整合、与社区服务的集成、语言的记忆、耳语识别系统的验证、应用的灵活性以及语言和应用软件的开发。如果您正在阅读有关在互联网上使用聊天机器人的文章,本手册可帮助您了解聊天机器人的使用标准,并可帮助您获得有关聊天机器人框架的使用和维护的信息。在本报告中,RQ1 和 RQ2 的相关内容可能会被删除,因为在本报告中,有关聊天机器人的相关文章、有关聊天机器人标准的内容以及有关聊天机器人框架的内容都会被删除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Criteria Selection and Comparative Analysis of Popular Chatbot Frameworks (Dialog flow, Microsoft Bot Framework, IBM Watson Assistant and Rasa) For Implementation in Libraries: a Systematic Literature Review
ABSTRACT Chatbots are increasingly popular in various fields, including in libraries, to improve services and interactions with users. In choosing a chatbot for libraries, proper criteria are needed. Some common chatbot frameworks are Dialogflow, Microsoft Bot Framework, IBM Watson Assistant, and Rasa, which have advantages and disadvantages in the library context. This research conducts a systematic literature review on the selection criteria and comparison of popular chatbot frameworks such as Dialogflow, Microsoft Bot Framework, IBM Watson Assistant, and Rasa in library implementation. The research method used a systematic literature review from sources such as IEEE, Proquest, and ScienceDirect. The keywords used were ("Chatbot" OR "Bot" OR "Conversational agent" OR "Virtual assistant") AND ("Dialogflow" OR "IBM Watson Assistant" OR "Microsoft Bot Framework" OR "Rasa"). The results show that the criteria in chatbot selection include Natural Language Understanding (NLU) pipeline customization capabilities, ease of use, integration with Machine Learning and Natural Language Processing, integration capabilities with communication channels, natural language understanding capabilities, validation with automated user story extraction systems, flexibility in development, and tools for natural language processing and machine learning. Although no articles specifically addressing chatbots were found in the library, this research provides an overview of chatbot selection criteria and provides information on the advantages and disadvantages of each chatbot framework as outlined in the results and discussion table. In conclusion, although research questions RQ1 and RQ2 cannot be answered due to the lack of specific articles about chatbots in libraries, this research provides an overview of chatbot selection criteria and can provide an understanding of the advantages and disadvantages of existing chatbot frameworks...   ABSTRAK Chatbot semakin populer di berbagai bidang, termasuk di perpustakaan, untuk meningkatkan layanan dan interaksi dengan pengguna. Dalam memilih chatbot untuk perpustakaan, kriteria yang tepat diperlukan. Beberapa framework chatbot umum adalah Dialogflow, Microsoft Bot Framework, IBM Watson Assistant, dan Rasa, yang memiliki kelebihan dan kekurangan dalam konteks perpustakaan. Penelitian ini melakukan tinjauan literatur sistematis tentang kriteria pemilihan dan perbandingan framework chatbot populer seperti Dialogflow, Microsoft Bot Framework, IBM Watson Assistant, dan Rasa dalam implementasi perpustakaan. Metode penelitian menggunakan tinjauan literatur sistematis dari sumber seperti IEEE, Proquest, dan ScienceDirect. Kata kunci yang digunakan adalah ("Chatbot" OR "Bot" OR "Conversational agent" OR "Virtual assistant") AND ("Dialogflow" OR "IBM Watson Assistant" OR "Microsoft Bot Framework" OR "Rasa"). Hasil penelitian menunjukkan bahwa kriteria dalam pemilihan chatbot mencakup kemampuan penyesuaian pipeline Natural Language Understanding (NLU), kemudahan penggunaan, integrasi dengan Machine Learning dan Natural Language Processing, kemampuan integrasi dengan saluran komunikasi, kemampuan memahami bahasa alami, validasi dengan sistem ekstraksi cerita pengguna otomatis, fleksibilitas dalam pengembangan, dan alat untuk pemrosesan bahasa alami dan pembelajaran mesin. Meskipun tidak ditemukan artikel yang secara khusus membahas chatbot di perpustakaan, penelitian ini memberikan gambaran umum tentang kriteria pemilihan chatbot dan memberikan informasi tentang kelebihan dan kekurangan masing-masing framework chatbot seperti yang diuraikan dalam tabel hasil dan pembahasan. Dalam kesimpulannya, meskipun pertanyaan penelitian RQ1 dan RQ2 tidak dapat terjawab karena kurangnya artikel yang spesifik tentang chatbot di perpustakaan, penelitian ini memberikan gambaran umum tentang kriteria pemilihan chatbot dan dapat memberikan pemahaman tentang kelebihan dan kekurangan framework chatbot yang ada.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信