超对称多项式在统计量子物理学中的应用

Q2 Physics and Astronomy
I. Chernega, Mariia Martsinkiv, Taras Vasylyshyn, Andriy Zagorodnyuk
{"title":"超对称多项式在统计量子物理学中的应用","authors":"I. Chernega, Mariia Martsinkiv, Taras Vasylyshyn, Andriy Zagorodnyuk","doi":"10.3390/quantum5040043","DOIUrl":null,"url":null,"abstract":"We propose a correspondence between the partition functions of ideal gases consisting of both bosons and fermions and the algebraic bases of supersymmetric polynomials on the Banach space of absolutely summable two-sided sequences ℓ1(Z0). Such an approach allows us to interpret some of the combinatorial identities for supersymmetric polynomials from a physical point of view. We consider a relation of equivalence for ℓ1(Z0), induced by the supersymmetric polynomials, and the semi-ring algebraic structures on the quotient set with respect to this relation. The quotient set is a natural model for the set of energy levels of a quantum system. We introduce two different topological semi-ring structures into this set and discuss their possible physical interpretations.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":"7 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of Supersymmetric Polynomials in Statistical Quantum Physics\",\"authors\":\"I. Chernega, Mariia Martsinkiv, Taras Vasylyshyn, Andriy Zagorodnyuk\",\"doi\":\"10.3390/quantum5040043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a correspondence between the partition functions of ideal gases consisting of both bosons and fermions and the algebraic bases of supersymmetric polynomials on the Banach space of absolutely summable two-sided sequences ℓ1(Z0). Such an approach allows us to interpret some of the combinatorial identities for supersymmetric polynomials from a physical point of view. We consider a relation of equivalence for ℓ1(Z0), induced by the supersymmetric polynomials, and the semi-ring algebraic structures on the quotient set with respect to this relation. The quotient set is a natural model for the set of energy levels of a quantum system. We introduce two different topological semi-ring structures into this set and discuss their possible physical interpretations.\",\"PeriodicalId\":34124,\"journal\":{\"name\":\"Quantum Reports\",\"volume\":\"7 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/quantum5040043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/quantum5040043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了由玻色子和费米子组成的理想气体的分区函数与绝对可求和双面序列 ℓ1(Z0) 的巴拿赫空间上的超对称多项式代数基之间的对应关系。通过这种方法,我们可以从物理角度解释超对称多项式的一些组合特性。我们考虑超对称多项式诱导的 ℓ1(Z0) 的等价关系,以及商集上与此关系相关的半环代数结构。商集是量子系统能级集的自然模型。我们在这个集合中引入了两种不同的拓扑半环结构,并讨论了它们可能的物理解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of Supersymmetric Polynomials in Statistical Quantum Physics
We propose a correspondence between the partition functions of ideal gases consisting of both bosons and fermions and the algebraic bases of supersymmetric polynomials on the Banach space of absolutely summable two-sided sequences ℓ1(Z0). Such an approach allows us to interpret some of the combinatorial identities for supersymmetric polynomials from a physical point of view. We consider a relation of equivalence for ℓ1(Z0), induced by the supersymmetric polynomials, and the semi-ring algebraic structures on the quotient set with respect to this relation. The quotient set is a natural model for the set of energy levels of a quantum system. We introduce two different topological semi-ring structures into this set and discuss their possible physical interpretations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Reports
Quantum Reports Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
3.30
自引率
0.00%
发文量
33
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信