基于深度互学的轨道角动量模式识别

IF 2.1 4区 物理与天体物理 Q2 OPTICS
T. Qu, Zhiming Zhao, Yan Zhang, Jiaji Wu, Zhensen Wu
{"title":"基于深度互学的轨道角动量模式识别","authors":"T. Qu, Zhiming Zhao, Yan Zhang, Jiaji Wu, Zhensen Wu","doi":"10.3390/photonics10121357","DOIUrl":null,"url":null,"abstract":"Due to its orbital angular momentum (OAM), optical vortex has been widely used in communications and LIDAR target detection. The OAM mode recognition based on deep learning is mostly based on the basic convolutional neural network. To ensure high-precision OAM state detection, a deeper network structure is required to overcome the problem of similar light intensity distribution of different superimposed vortex beams and the effect of atmospheric turbulence disturbance. However, the large number of parameters and the computation of the OAM state detection network conflict with the requirements of deploying optical communication system equipment. In this paper, an online knowledge distillation scheme is selected to achieve an end-to-end single-stage training and the inter-class dark knowledge of similar modes are fully utilized. An optical vortex OAM state detection technique based on deep mutual learning (DML) is proposed. The simulation results show that after mutual learning training, a small detection network with higher accuracy can be obtained, which is more suitable for terminal deployment. Based on the scalability of the number of networks in the DML queue, it provides a new possibility to further improve the detection accuracy of the optical communication.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"165 ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Mutual Learning-Based Mode Recognition of Orbital Angular Momentum\",\"authors\":\"T. Qu, Zhiming Zhao, Yan Zhang, Jiaji Wu, Zhensen Wu\",\"doi\":\"10.3390/photonics10121357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its orbital angular momentum (OAM), optical vortex has been widely used in communications and LIDAR target detection. The OAM mode recognition based on deep learning is mostly based on the basic convolutional neural network. To ensure high-precision OAM state detection, a deeper network structure is required to overcome the problem of similar light intensity distribution of different superimposed vortex beams and the effect of atmospheric turbulence disturbance. However, the large number of parameters and the computation of the OAM state detection network conflict with the requirements of deploying optical communication system equipment. In this paper, an online knowledge distillation scheme is selected to achieve an end-to-end single-stage training and the inter-class dark knowledge of similar modes are fully utilized. An optical vortex OAM state detection technique based on deep mutual learning (DML) is proposed. The simulation results show that after mutual learning training, a small detection network with higher accuracy can be obtained, which is more suitable for terminal deployment. Based on the scalability of the number of networks in the DML queue, it provides a new possibility to further improve the detection accuracy of the optical communication.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":\"165 \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics10121357\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics10121357","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

由于其轨道角动量(OAM),光涡旋已被广泛应用于通信和激光雷达目标探测。基于深度学习的 OAM 模式识别大多基于基本的卷积神经网络。为了确保高精度的 OAM 状态检测,需要更深层次的网络结构来克服不同叠加涡流光束光强分布相似的问题和大气湍流扰动的影响。然而,OAM 状态检测网络的参数数量多、计算量大,与光通信系统设备的部署要求相冲突。本文选择在线知识提炼方案,实现端到端的单级训练,并充分利用相似模式的类间暗知识。本文提出了一种基于深度相互学习(DML)的光涡旋 OAM 状态检测技术。仿真结果表明,经过相互学习训练后,可以得到精度较高的小型检测网络,更适合终端部署。基于 DML 队列中网络数量的可扩展性,为进一步提高光通信的检测精度提供了新的可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Mutual Learning-Based Mode Recognition of Orbital Angular Momentum
Due to its orbital angular momentum (OAM), optical vortex has been widely used in communications and LIDAR target detection. The OAM mode recognition based on deep learning is mostly based on the basic convolutional neural network. To ensure high-precision OAM state detection, a deeper network structure is required to overcome the problem of similar light intensity distribution of different superimposed vortex beams and the effect of atmospheric turbulence disturbance. However, the large number of parameters and the computation of the OAM state detection network conflict with the requirements of deploying optical communication system equipment. In this paper, an online knowledge distillation scheme is selected to achieve an end-to-end single-stage training and the inter-class dark knowledge of similar modes are fully utilized. An optical vortex OAM state detection technique based on deep mutual learning (DML) is proposed. The simulation results show that after mutual learning training, a small detection network with higher accuracy can be obtained, which is more suitable for terminal deployment. Based on the scalability of the number of networks in the DML queue, it provides a new possibility to further improve the detection accuracy of the optical communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信