Extracta Mathematicae Volumen, A. Sarikaya, ¨O. G¨olbas¸i
{"title":"关于质环的列理想与同模化的结果","authors":"Extracta Mathematicae Volumen, A. Sarikaya, ¨O. G¨olbas¸i","doi":"10.17398/2605-5686.38.2.125","DOIUrl":null,"url":null,"abstract":"Let R be a prime ring of characteristic not 2 and U be a noncentral square closed Lie ideal of R. An additive mapping Hon R is called a homoderivation if H(xy) =H(x)H(y)+H(x)y+xH(y)for all x, y∈R. In this paper we investigate homoderivations satisfying certain differential identitieson square closed Lie ideals of prime rings.","PeriodicalId":33668,"journal":{"name":"Extracta Mathematicae","volume":"83 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Results on Lie ideals of prime ringswith homoderivations\",\"authors\":\"Extracta Mathematicae Volumen, A. Sarikaya, ¨O. G¨olbas¸i\",\"doi\":\"10.17398/2605-5686.38.2.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be a prime ring of characteristic not 2 and U be a noncentral square closed Lie ideal of R. An additive mapping Hon R is called a homoderivation if H(xy) =H(x)H(y)+H(x)y+xH(y)for all x, y∈R. In this paper we investigate homoderivations satisfying certain differential identitieson square closed Lie ideals of prime rings.\",\"PeriodicalId\":33668,\"journal\":{\"name\":\"Extracta Mathematicae\",\"volume\":\"83 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extracta Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17398/2605-5686.38.2.125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracta Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17398/2605-5686.38.2.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
设 R 是特征不为 2 的素环,U 是 R 的一个非中心方形闭列理想。在本文中,我们将研究素环的方闭列理想上满足某些微分等式的同模化。
Results on Lie ideals of prime ringswith homoderivations
Let R be a prime ring of characteristic not 2 and U be a noncentral square closed Lie ideal of R. An additive mapping Hon R is called a homoderivation if H(xy) =H(x)H(y)+H(x)y+xH(y)for all x, y∈R. In this paper we investigate homoderivations satisfying certain differential identitieson square closed Lie ideals of prime rings.