Norbert Markó, Ernő Horváth, István Szalay, K. Enisz
{"title":"基于深度学习的自主车辆定位方法:应用与实验分析","authors":"Norbert Markó, Ernő Horváth, István Szalay, K. Enisz","doi":"10.3390/machines11121079","DOIUrl":null,"url":null,"abstract":"In a vehicle, wheel speed sensors and inertial measurement units (IMUs) are present onboard, and their raw data can be used for localization estimation. Both wheel sensors and IMUs encounter challenges such as bias and measurement noise, which accumulate as errors over time. Even a slight inaccuracy or minor error can render the localization system unreliable and unusable in a matter of seconds. Traditional algorithms, such as the extended Kalman filter (EKF), have been applied for a long time in non-linear systems. These systems have white noise in both the system and in the estimation model. These approaches require deep knowledge of the non-linear noise characteristics of the sensors. On the other hand, as a subset of artificial intelligence (AI), neural network-based (NN) algorithms do not necessarily have these strict requirements. The current paper proposes an AI-based long short-term memory (LSTM) localization approach and evaluates its performance against the ground truth.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"263 ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Approach for Autonomous Vehicle Localization: Application and Experimental Analysis\",\"authors\":\"Norbert Markó, Ernő Horváth, István Szalay, K. Enisz\",\"doi\":\"10.3390/machines11121079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a vehicle, wheel speed sensors and inertial measurement units (IMUs) are present onboard, and their raw data can be used for localization estimation. Both wheel sensors and IMUs encounter challenges such as bias and measurement noise, which accumulate as errors over time. Even a slight inaccuracy or minor error can render the localization system unreliable and unusable in a matter of seconds. Traditional algorithms, such as the extended Kalman filter (EKF), have been applied for a long time in non-linear systems. These systems have white noise in both the system and in the estimation model. These approaches require deep knowledge of the non-linear noise characteristics of the sensors. On the other hand, as a subset of artificial intelligence (AI), neural network-based (NN) algorithms do not necessarily have these strict requirements. The current paper proposes an AI-based long short-term memory (LSTM) localization approach and evaluates its performance against the ground truth.\",\"PeriodicalId\":48519,\"journal\":{\"name\":\"Machines\",\"volume\":\"263 \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/machines11121079\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11121079","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Deep Learning-Based Approach for Autonomous Vehicle Localization: Application and Experimental Analysis
In a vehicle, wheel speed sensors and inertial measurement units (IMUs) are present onboard, and their raw data can be used for localization estimation. Both wheel sensors and IMUs encounter challenges such as bias and measurement noise, which accumulate as errors over time. Even a slight inaccuracy or minor error can render the localization system unreliable and unusable in a matter of seconds. Traditional algorithms, such as the extended Kalman filter (EKF), have been applied for a long time in non-linear systems. These systems have white noise in both the system and in the estimation model. These approaches require deep knowledge of the non-linear noise characteristics of the sensors. On the other hand, as a subset of artificial intelligence (AI), neural network-based (NN) algorithms do not necessarily have these strict requirements. The current paper proposes an AI-based long short-term memory (LSTM) localization approach and evaluates its performance against the ground truth.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.