关于特殊完全多项式的指数

IF 1 Q1 MATHEMATICS
L.H. Gallardo
{"title":"关于特殊完全多项式的指数","authors":"L.H. Gallardo","doi":"10.15330/cmp.15.2.507-513","DOIUrl":null,"url":null,"abstract":"We give a lower bound of the degree and the number of distinct prime divisors of the index of special perfect polynomials. More precisely, we prove that $\\omega(d) \\geq 9$, and $\\deg(d) \\geq 258$, where $d := \\gcd(Q^2,\\sigma(Q^2))$ is the index of the special perfect polynomial $A := p_1^2 Q^2$, in which $p_1$ is irreducible and has minimal degree. This means that $ \\sigma(A)=A$ in the polynomial ring ${\\mathbb{F}}_2[x]$. The function $\\sigma$ is a natural analogue of the usual sums of divisors function over the integers. The index considered is an analogue of the index of an odd perfect number, for which a lower bound of $135$ is known. Our work use elementary properties of the polynomials as well as results of the paper [J. Théor. Nombres Bordeaux 2007, 19 (1), 165$-$174].","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the index of special perfect polynomials\",\"authors\":\"L.H. Gallardo\",\"doi\":\"10.15330/cmp.15.2.507-513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a lower bound of the degree and the number of distinct prime divisors of the index of special perfect polynomials. More precisely, we prove that $\\\\omega(d) \\\\geq 9$, and $\\\\deg(d) \\\\geq 258$, where $d := \\\\gcd(Q^2,\\\\sigma(Q^2))$ is the index of the special perfect polynomial $A := p_1^2 Q^2$, in which $p_1$ is irreducible and has minimal degree. This means that $ \\\\sigma(A)=A$ in the polynomial ring ${\\\\mathbb{F}}_2[x]$. The function $\\\\sigma$ is a natural analogue of the usual sums of divisors function over the integers. The index considered is an analogue of the index of an odd perfect number, for which a lower bound of $135$ is known. Our work use elementary properties of the polynomials as well as results of the paper [J. Théor. Nombres Bordeaux 2007, 19 (1), 165$-$174].\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.2.507-513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.507-513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了特殊完全多项式索引的度数和不同素除数的下限。更准确地说,我们证明了 $\omega(d) \geq 9$ 和 $\deg(d) \geq 258$,其中 $d := \gcd(Q^2,\sigma(Q^2))$ 是特殊完全多项式 $A := p_1^2 Q^2$ 的索引,其中 $p_1$ 是不可约的,并且具有最小度。这意味着在多项式环 ${{mathbb{F}}_2[x]$ 中,$\sigma(A)=A$。函数 $\sigma$ 是整数上通常的除数和函数的自然类比。所考虑的指数是奇完全数指数的类似物,已知其下限为 $135$。我们的工作使用了多项式的基本性质以及论文[J. Théor. Nombres Bordeaux, 2007, 19 (1), 165$-$174] 的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the index of special perfect polynomials
We give a lower bound of the degree and the number of distinct prime divisors of the index of special perfect polynomials. More precisely, we prove that $\omega(d) \geq 9$, and $\deg(d) \geq 258$, where $d := \gcd(Q^2,\sigma(Q^2))$ is the index of the special perfect polynomial $A := p_1^2 Q^2$, in which $p_1$ is irreducible and has minimal degree. This means that $ \sigma(A)=A$ in the polynomial ring ${\mathbb{F}}_2[x]$. The function $\sigma$ is a natural analogue of the usual sums of divisors function over the integers. The index considered is an analogue of the index of an odd perfect number, for which a lower bound of $135$ is known. Our work use elementary properties of the polynomials as well as results of the paper [J. Théor. Nombres Bordeaux 2007, 19 (1), 165$-$174].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信