Bekelu Negash, Alan Katz, Christine J. Neilson, Moniruzzaman Moni, Marc Nesca, Alexander Singer, J. Enns
{"title":"对包含个人健康信息的自由文本数据进行去身份化处理:审查范围界定审查","authors":"Bekelu Negash, Alan Katz, Christine J. Neilson, Moniruzzaman Moni, Marc Nesca, Alexander Singer, J. Enns","doi":"10.23889/ijpds.v8i1.2153","DOIUrl":null,"url":null,"abstract":"IntroductionUsing data in research often requires that the data first be de-identified, particularly in the case of health data, which often include Personal Identifiable Information (PII) and/or Personal Health Identifying Information (PHII). There are established procedures for de-identifying structured data, but de-identifying clinical notes, electronic health records, and other records that include free text data is more complex. Several different ways to achieve this are documented in the literature. This scoping review identifies categories of de-identification methods that can be used for free text data.\nMethodsWe adopted an established scoping review methodology to examine review articles published up to May 9, 2022, in Ovid MEDLINE; Ovid Embase; Scopus; the ACM Digital Library; IEEE Explore; and Compendex. Our research question was: What methods are used to de-identify free text data? Two independent reviewers conducted title and abstract screening and full-text article screening using the online review management tool Covidence.\nResultsThe initial literature search retrieved 3,312 articles, most of which focused primarily on structured data. Eighteen publications describing methods of de-identification of free text data met the inclusion criteria for our review. The majority of the included articles focused on removing categories of personal health information identified by the Health Insurance Portability and Accountability Act (HIPAA). The de-identification methods they described combined rule-based methods or machine learning with other strategies such as deep learning.\nConclusionOur review identifies and categorises de-identification methods for free text data as rule-based methods, machine learning, deep learning and a combination of these and other approaches. Most of the articles we found in our search refer to de-identification methods that target some or all categories of PHII. Our review also highlights how de-identification systems for free text data have evolved over time and points to hybrid approaches as the most promising approach for the future.","PeriodicalId":36483,"journal":{"name":"International Journal of Population Data Science","volume":"63 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De-identification of Free Text Data containing Personal Health Information: A Scoping Review of Reviews\",\"authors\":\"Bekelu Negash, Alan Katz, Christine J. Neilson, Moniruzzaman Moni, Marc Nesca, Alexander Singer, J. Enns\",\"doi\":\"10.23889/ijpds.v8i1.2153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IntroductionUsing data in research often requires that the data first be de-identified, particularly in the case of health data, which often include Personal Identifiable Information (PII) and/or Personal Health Identifying Information (PHII). There are established procedures for de-identifying structured data, but de-identifying clinical notes, electronic health records, and other records that include free text data is more complex. Several different ways to achieve this are documented in the literature. This scoping review identifies categories of de-identification methods that can be used for free text data.\\nMethodsWe adopted an established scoping review methodology to examine review articles published up to May 9, 2022, in Ovid MEDLINE; Ovid Embase; Scopus; the ACM Digital Library; IEEE Explore; and Compendex. Our research question was: What methods are used to de-identify free text data? Two independent reviewers conducted title and abstract screening and full-text article screening using the online review management tool Covidence.\\nResultsThe initial literature search retrieved 3,312 articles, most of which focused primarily on structured data. Eighteen publications describing methods of de-identification of free text data met the inclusion criteria for our review. The majority of the included articles focused on removing categories of personal health information identified by the Health Insurance Portability and Accountability Act (HIPAA). The de-identification methods they described combined rule-based methods or machine learning with other strategies such as deep learning.\\nConclusionOur review identifies and categorises de-identification methods for free text data as rule-based methods, machine learning, deep learning and a combination of these and other approaches. Most of the articles we found in our search refer to de-identification methods that target some or all categories of PHII. Our review also highlights how de-identification systems for free text data have evolved over time and points to hybrid approaches as the most promising approach for the future.\",\"PeriodicalId\":36483,\"journal\":{\"name\":\"International Journal of Population Data Science\",\"volume\":\"63 5\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Population Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23889/ijpds.v8i1.2153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Population Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23889/ijpds.v8i1.2153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
De-identification of Free Text Data containing Personal Health Information: A Scoping Review of Reviews
IntroductionUsing data in research often requires that the data first be de-identified, particularly in the case of health data, which often include Personal Identifiable Information (PII) and/or Personal Health Identifying Information (PHII). There are established procedures for de-identifying structured data, but de-identifying clinical notes, electronic health records, and other records that include free text data is more complex. Several different ways to achieve this are documented in the literature. This scoping review identifies categories of de-identification methods that can be used for free text data.
MethodsWe adopted an established scoping review methodology to examine review articles published up to May 9, 2022, in Ovid MEDLINE; Ovid Embase; Scopus; the ACM Digital Library; IEEE Explore; and Compendex. Our research question was: What methods are used to de-identify free text data? Two independent reviewers conducted title and abstract screening and full-text article screening using the online review management tool Covidence.
ResultsThe initial literature search retrieved 3,312 articles, most of which focused primarily on structured data. Eighteen publications describing methods of de-identification of free text data met the inclusion criteria for our review. The majority of the included articles focused on removing categories of personal health information identified by the Health Insurance Portability and Accountability Act (HIPAA). The de-identification methods they described combined rule-based methods or machine learning with other strategies such as deep learning.
ConclusionOur review identifies and categorises de-identification methods for free text data as rule-based methods, machine learning, deep learning and a combination of these and other approaches. Most of the articles we found in our search refer to de-identification methods that target some or all categories of PHII. Our review also highlights how de-identification systems for free text data have evolved over time and points to hybrid approaches as the most promising approach for the future.