{"title":"X 射线双星光谱天体物理学","authors":"Leticia Corral Bustamante","doi":"10.4028/p-Sp3C6x","DOIUrl":null,"url":null,"abstract":"In view of the fact that X-ray sources present characteristic spectra that make them unique, the spectral fitting technique has proven to play a fundamental role through the use of models that make it possible to reproduce the observed spectrum, thus making it possible to characterize the type of source that gave rise to it. A tool of paramount importance, among others that are currently gaining ground, is the XSPEC software, which is a solid and stable spectral fitting package that allows us to conduct scientific work with high standards of rigor in the analysis of data from astronomical objects in whose processes high energies are intrinsically involved, as is the case of X-rays. In this work we fit and analyze experimental data of two X-ray binary spectra: Cyg X-1 and V 0332+53, with theoretical models in XSPEC to obtain the expected statistics of the best fit through the reduced chi-square (hereafter, χ2) in both astronomical sources. From the results, it can be concluded that in both sources the best fit representing the physical processes occurring in these binaries was achieved, very close to results obtained by other authors using different techniques, contributing to the state of the art of the spectrum of astrophysical processes of high energy binaries.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astrophysics of X-Ray Binary Spectra\",\"authors\":\"Leticia Corral Bustamante\",\"doi\":\"10.4028/p-Sp3C6x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the fact that X-ray sources present characteristic spectra that make them unique, the spectral fitting technique has proven to play a fundamental role through the use of models that make it possible to reproduce the observed spectrum, thus making it possible to characterize the type of source that gave rise to it. A tool of paramount importance, among others that are currently gaining ground, is the XSPEC software, which is a solid and stable spectral fitting package that allows us to conduct scientific work with high standards of rigor in the analysis of data from astronomical objects in whose processes high energies are intrinsically involved, as is the case of X-rays. In this work we fit and analyze experimental data of two X-ray binary spectra: Cyg X-1 and V 0332+53, with theoretical models in XSPEC to obtain the expected statistics of the best fit through the reduced chi-square (hereafter, χ2) in both astronomical sources. From the results, it can be concluded that in both sources the best fit representing the physical processes occurring in these binaries was achieved, very close to results obtained by other authors using different techniques, contributing to the state of the art of the spectrum of astrophysical processes of high energy binaries.\",\"PeriodicalId\":11306,\"journal\":{\"name\":\"Defect and Diffusion Forum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defect and Diffusion Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-Sp3C6x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-Sp3C6x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
摘要
鉴于 X 射线源呈现的特征光谱使其独一无二,光谱拟合技术已被证明发挥了重要作 用,通过使用模型可以再现观测到的光谱,从而可以确定产生光谱的源的类型。XSPEC 软件是一个极其重要的工具,也是目前越来越流行的工具之一,它是一个坚实稳定的光谱拟合软件包,使我们能够以高标准的严谨态度开展科学工作,分析来自天体的数据。在这项工作中,我们用 XSPEC 中的理论模型拟合和分析了两个 X 射线双星光谱的实验数据:Cyg X-1 和 V 0332+53,通过缩小的奇偶方差(以下简称为 χ2)获得了这两个天文来源的预期最佳拟合统计量。从结果中可以得出结论,在这两个来源中都实现了代表这些双星中发生的物理过程的最佳拟合,与其他作者使用不同技术获得的结果非常接近,从而为高能双星天体物理过程光谱的最新技术水平做出了贡献。
In view of the fact that X-ray sources present characteristic spectra that make them unique, the spectral fitting technique has proven to play a fundamental role through the use of models that make it possible to reproduce the observed spectrum, thus making it possible to characterize the type of source that gave rise to it. A tool of paramount importance, among others that are currently gaining ground, is the XSPEC software, which is a solid and stable spectral fitting package that allows us to conduct scientific work with high standards of rigor in the analysis of data from astronomical objects in whose processes high energies are intrinsically involved, as is the case of X-rays. In this work we fit and analyze experimental data of two X-ray binary spectra: Cyg X-1 and V 0332+53, with theoretical models in XSPEC to obtain the expected statistics of the best fit through the reduced chi-square (hereafter, χ2) in both astronomical sources. From the results, it can be concluded that in both sources the best fit representing the physical processes occurring in these binaries was achieved, very close to results obtained by other authors using different techniques, contributing to the state of the art of the spectrum of astrophysical processes of high energy binaries.
期刊介绍:
Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.