为食品加工业开发加权生产力模型

B. Kareem, A. S. Ilori, A. S. Lawal
{"title":"为食品加工业开发加权生产力模型","authors":"B. Kareem, A. S. Ilori, A. S. Lawal","doi":"10.38032/jea.2023.04.003","DOIUrl":null,"url":null,"abstract":"In this paper, the data collected from a food processing industry was used to calculate the total productivity. It presents a comprehensive model and methodology for defining and measuring productivity attributes in the food processing industry. The proposed productivity model encompasses seven key factor groups, namely labor, capital, material, energy, machines, facility maintenance, and worker stress levels. Each group is further disaggregated into individual factors, which are assigned specific weights. The mathematical expression of the productivity index model involves summing the weighted individual factors and dividing the result by the total number of group factors. In the case study conducted at a Nigerian food processing company, the developed model was applied to measure the productivity levels. The findings revealed that the current productivity of the company stands at approximately 90%. By utilizing the model, the parameters of productivity were measured, and the results were set as baseline values for future assessments. The study outcomes shed light on the perceived importance and weight values of factors within each group, highlighting their significance in influencing productivity within a technologically advanced food processing corporation. This research contributes valuable insights into the measurement and enhancement of productivity in the food processing industry, offering a structured framework for evaluating process outcomes and optimizing operations to enhance competitiveness. Incorporating the current productivity level of 90% and setting it as the baseline value provides a reference point by allowing comparisons and analysis of productivity improvements over time.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"17 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Weighted Productivity Model for a Food Processing Industry\",\"authors\":\"B. Kareem, A. S. Ilori, A. S. Lawal\",\"doi\":\"10.38032/jea.2023.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the data collected from a food processing industry was used to calculate the total productivity. It presents a comprehensive model and methodology for defining and measuring productivity attributes in the food processing industry. The proposed productivity model encompasses seven key factor groups, namely labor, capital, material, energy, machines, facility maintenance, and worker stress levels. Each group is further disaggregated into individual factors, which are assigned specific weights. The mathematical expression of the productivity index model involves summing the weighted individual factors and dividing the result by the total number of group factors. In the case study conducted at a Nigerian food processing company, the developed model was applied to measure the productivity levels. The findings revealed that the current productivity of the company stands at approximately 90%. By utilizing the model, the parameters of productivity were measured, and the results were set as baseline values for future assessments. The study outcomes shed light on the perceived importance and weight values of factors within each group, highlighting their significance in influencing productivity within a technologically advanced food processing corporation. This research contributes valuable insights into the measurement and enhancement of productivity in the food processing industry, offering a structured framework for evaluating process outcomes and optimizing operations to enhance competitiveness. Incorporating the current productivity level of 90% and setting it as the baseline value provides a reference point by allowing comparisons and analysis of productivity improvements over time.\",\"PeriodicalId\":292407,\"journal\":{\"name\":\"Journal of Engineering Advancements\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Advancements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.38032/jea.2023.04.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Advancements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38032/jea.2023.04.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用从食品加工业收集到的数据计算总生产率。它提出了一个定义和衡量食品加工业生产率属性的综合模型和方法。提出的生产率模型包括七个关键因素组,即劳动力、资本、材料、能源、机器、设施维护和工人压力水平。每组因素又进一步细分为单个因素,并赋予特定权重。生产率指数模型的数学表达式包括将加权的单个因素相加,然后将结果除以组因素总数。在对尼日利亚一家食品加工公司进行的案例研究中,应用了所开发的模型来衡量生产率水平。研究结果显示,该公司目前的生产率约为 90%。通过使用该模型,对生产率参数进行了测量,并将结果设定为未来评估的基准值。研究成果揭示了每组因素的感知重要性和权重值,突出了它们在影响技术先进的食品加工企业生产率方面的重要性。这项研究为衡量和提高食品加工业的生产率提供了宝贵的见解,为评估流程结果和优化运营以提高竞争力提供了结构化框架。将当前 90% 的生产率水平作为基线值,通过比较和分析随着时间推移生产率的提高,提供了一个参考点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Weighted Productivity Model for a Food Processing Industry
In this paper, the data collected from a food processing industry was used to calculate the total productivity. It presents a comprehensive model and methodology for defining and measuring productivity attributes in the food processing industry. The proposed productivity model encompasses seven key factor groups, namely labor, capital, material, energy, machines, facility maintenance, and worker stress levels. Each group is further disaggregated into individual factors, which are assigned specific weights. The mathematical expression of the productivity index model involves summing the weighted individual factors and dividing the result by the total number of group factors. In the case study conducted at a Nigerian food processing company, the developed model was applied to measure the productivity levels. The findings revealed that the current productivity of the company stands at approximately 90%. By utilizing the model, the parameters of productivity were measured, and the results were set as baseline values for future assessments. The study outcomes shed light on the perceived importance and weight values of factors within each group, highlighting their significance in influencing productivity within a technologically advanced food processing corporation. This research contributes valuable insights into the measurement and enhancement of productivity in the food processing industry, offering a structured framework for evaluating process outcomes and optimizing operations to enhance competitiveness. Incorporating the current productivity level of 90% and setting it as the baseline value provides a reference point by allowing comparisons and analysis of productivity improvements over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信