第 n 次加权型解析函数巴拿赫空间上乘法运算符和加权合成运算符的投射等分线

IF 0.6 Q3 MATHEMATICS
Shams Alyusof
{"title":"第 n 次加权型解析函数巴拿赫空间上乘法运算符和加权合成运算符的投射等分线","authors":"Shams Alyusof","doi":"10.37256/cm.4420232472","DOIUrl":null,"url":null,"abstract":"\n\n\nThis paper is to characterize isometries of multiplication operators and weighted composition operators on the nth weighted-type Banach spaces {Vn : n ∈ N} of analytic functions on the open unit disk of which the Bloch space and the Zygmund space are particular cases at n = 1, 2. We give characterizations of the symbols ψ and φ for which the multiplication operator Mψ and the weighted composition operator Wψ,φ are surjective isometries. Moreover, we show that generalized weighted composition operators are not isometric on Vn.\n\n\n","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":"9 8","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surjective Isometries of Multiplication Operators and Weighted Composition Operators on nth Weighted-Type Banach Spaces of Analytic Functions\",\"authors\":\"Shams Alyusof\",\"doi\":\"10.37256/cm.4420232472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\nThis paper is to characterize isometries of multiplication operators and weighted composition operators on the nth weighted-type Banach spaces {Vn : n ∈ N} of analytic functions on the open unit disk of which the Bloch space and the Zygmund space are particular cases at n = 1, 2. We give characterizations of the symbols ψ and φ for which the multiplication operator Mψ and the weighted composition operator Wψ,φ are surjective isometries. Moreover, we show that generalized weighted composition operators are not isometric on Vn.\\n\\n\\n\",\"PeriodicalId\":29767,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":\"9 8\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.4420232472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420232472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在表征开单位圆盘上解析函数的第 n 个加权型巴拿赫空间 {Vn : n∈ N} 上的乘法算子和加权合成算子的等距性,其中布洛赫空间和齐格蒙空间是 n = 1, 2 时的特例。我们给出了符号 ψ 和 φ 的特征,对于这两个符号,乘法算子 Mψ 和加权合成算子 Wψ,φ 是投射等距。此外,我们还证明了广义加权合成算子在 Vn 上不是等距的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surjective Isometries of Multiplication Operators and Weighted Composition Operators on nth Weighted-Type Banach Spaces of Analytic Functions
This paper is to characterize isometries of multiplication operators and weighted composition operators on the nth weighted-type Banach spaces {Vn : n ∈ N} of analytic functions on the open unit disk of which the Bloch space and the Zygmund space are particular cases at n = 1, 2. We give characterizations of the symbols ψ and φ for which the multiplication operator Mψ and the weighted composition operator Wψ,φ are surjective isometries. Moreover, we show that generalized weighted composition operators are not isometric on Vn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信