{"title":"在 22 纳米 FDSOI 中设计基于延迟锁定环的低功耗 8 倍频乘法器","authors":"Naveed, J. Dix","doi":"10.3390/jlpea13040064","DOIUrl":null,"url":null,"abstract":"A low-power delay-locked loop (DLL)-based frequency multiplier is presented. The multiplier is designed in 22 nm FDSOI and achieves 8× multiplication. The proposed DLL uses a new simple duty cycle correction circuit and is XOR logic-based for frequency multiplication. Current starved delay cells are used to make the circuit power efficient. The circuit uses three 2× stages instead of an edge combiner to achieve 8× multiplication, thus requiring far less power and chip area as compared to conventional phase-locked loop (PLL) circuits. The proposed 8× multiplier occupies an active area of 0.09 mm2. The measurement result shows ultra-low power consumption of 130 µW at 0.8 V supply. The post-layout simulation shows a timing jitter of 24 ps (pk-pk) at 2.44 GHz.","PeriodicalId":38100,"journal":{"name":"Journal of Low Power Electronics and Applications","volume":"9 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Low-Power Delay-Locked Loop-Based 8× Frequency Multiplier in 22 nm FDSOI\",\"authors\":\"Naveed, J. Dix\",\"doi\":\"10.3390/jlpea13040064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-power delay-locked loop (DLL)-based frequency multiplier is presented. The multiplier is designed in 22 nm FDSOI and achieves 8× multiplication. The proposed DLL uses a new simple duty cycle correction circuit and is XOR logic-based for frequency multiplication. Current starved delay cells are used to make the circuit power efficient. The circuit uses three 2× stages instead of an edge combiner to achieve 8× multiplication, thus requiring far less power and chip area as compared to conventional phase-locked loop (PLL) circuits. The proposed 8× multiplier occupies an active area of 0.09 mm2. The measurement result shows ultra-low power consumption of 130 µW at 0.8 V supply. The post-layout simulation shows a timing jitter of 24 ps (pk-pk) at 2.44 GHz.\",\"PeriodicalId\":38100,\"journal\":{\"name\":\"Journal of Low Power Electronics and Applications\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jlpea13040064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jlpea13040064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of a Low-Power Delay-Locked Loop-Based 8× Frequency Multiplier in 22 nm FDSOI
A low-power delay-locked loop (DLL)-based frequency multiplier is presented. The multiplier is designed in 22 nm FDSOI and achieves 8× multiplication. The proposed DLL uses a new simple duty cycle correction circuit and is XOR logic-based for frequency multiplication. Current starved delay cells are used to make the circuit power efficient. The circuit uses three 2× stages instead of an edge combiner to achieve 8× multiplication, thus requiring far less power and chip area as compared to conventional phase-locked loop (PLL) circuits. The proposed 8× multiplier occupies an active area of 0.09 mm2. The measurement result shows ultra-low power consumption of 130 µW at 0.8 V supply. The post-layout simulation shows a timing jitter of 24 ps (pk-pk) at 2.44 GHz.