A. Ramirez‐DelaCruz, M. Bocanegra-Bernal, M. Márquez-Torres, E. Venegas-Contreras, G. Rojas-George, A. Reyes-Rojas
{"title":"δ-Bi2O3四元半导体固溶体的介电和光学特性","authors":"A. Ramirez‐DelaCruz, M. Bocanegra-Bernal, M. Márquez-Torres, E. Venegas-Contreras, G. Rojas-George, A. Reyes-Rojas","doi":"10.1002/pssa.202300800","DOIUrl":null,"url":null,"abstract":"Quaternary compositions of polycrystalline Bi1.74Dy0.14W0.12‐xScxO3 (x = 0.02, 0.03, 0.04, 0.05, 0.06) solid solutions were synthesized by the solid‐state reaction method. The 4a site symmetry of the space group occupied by Sc3+ ion retains the cubic fluorite‐type over a wide temperature range (450‐700 oC) for low Sc3+ content without losing the δ‐phase. Dielectric and ionic conductivity by complex impedance in the frequency range from 0.1 to 100 kHz suggests a temperature and Sc3+‐dependent relaxation process. The ionic conductivity increases with the Sc3+ content over the whole tested temperature range. An oxygen ion conductivity of 0.102 Scm‐1 at 700 oC and an activation energy of 0.32 eV was achieved for x=0.06. Optical properties and Rietveld refinement indicate a band gap reduction due to a bond length reduction (Bi‐O). These materials have potential in photocatalysis and water‐splitting technology due to their UV and visible region absorption capabilities.This article is protected by copyright. All rights reserved.","PeriodicalId":20150,"journal":{"name":"physica status solidi (a)","volume":"35 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dielectric and optical properties of δ‐Bi2O3 quaternary semiconducting solid solutions\",\"authors\":\"A. Ramirez‐DelaCruz, M. Bocanegra-Bernal, M. Márquez-Torres, E. Venegas-Contreras, G. Rojas-George, A. Reyes-Rojas\",\"doi\":\"10.1002/pssa.202300800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quaternary compositions of polycrystalline Bi1.74Dy0.14W0.12‐xScxO3 (x = 0.02, 0.03, 0.04, 0.05, 0.06) solid solutions were synthesized by the solid‐state reaction method. The 4a site symmetry of the space group occupied by Sc3+ ion retains the cubic fluorite‐type over a wide temperature range (450‐700 oC) for low Sc3+ content without losing the δ‐phase. Dielectric and ionic conductivity by complex impedance in the frequency range from 0.1 to 100 kHz suggests a temperature and Sc3+‐dependent relaxation process. The ionic conductivity increases with the Sc3+ content over the whole tested temperature range. An oxygen ion conductivity of 0.102 Scm‐1 at 700 oC and an activation energy of 0.32 eV was achieved for x=0.06. Optical properties and Rietveld refinement indicate a band gap reduction due to a bond length reduction (Bi‐O). These materials have potential in photocatalysis and water‐splitting technology due to their UV and visible region absorption capabilities.This article is protected by copyright. All rights reserved.\",\"PeriodicalId\":20150,\"journal\":{\"name\":\"physica status solidi (a)\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"physica status solidi (a)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202300800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (a)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202300800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dielectric and optical properties of δ‐Bi2O3 quaternary semiconducting solid solutions
Quaternary compositions of polycrystalline Bi1.74Dy0.14W0.12‐xScxO3 (x = 0.02, 0.03, 0.04, 0.05, 0.06) solid solutions were synthesized by the solid‐state reaction method. The 4a site symmetry of the space group occupied by Sc3+ ion retains the cubic fluorite‐type over a wide temperature range (450‐700 oC) for low Sc3+ content without losing the δ‐phase. Dielectric and ionic conductivity by complex impedance in the frequency range from 0.1 to 100 kHz suggests a temperature and Sc3+‐dependent relaxation process. The ionic conductivity increases with the Sc3+ content over the whole tested temperature range. An oxygen ion conductivity of 0.102 Scm‐1 at 700 oC and an activation energy of 0.32 eV was achieved for x=0.06. Optical properties and Rietveld refinement indicate a band gap reduction due to a bond length reduction (Bi‐O). These materials have potential in photocatalysis and water‐splitting technology due to their UV and visible region absorption capabilities.This article is protected by copyright. All rights reserved.