{"title":"基于 LFIG_DTW_HC 算法和广义加法模型的新型 PM2.5 浓度预测方法","authors":"Hong Yang, Han Zhang","doi":"10.3390/axioms12121118","DOIUrl":null,"url":null,"abstract":"As air pollution becomes more and more serious, PM2.5 is the primary pollutant, inevitably attracts wide public attention. Therefore, a novel PM2.5 concentration forecasting method based on linear fuzzy information granule_dynamic time warping_hierarchical clustering algorithm (LFIG_DTW_HC algorithm) and generalized additive model is proposed in this paper. First, take 30 provincial capitals in China for example, the cities are divided into seven regions by LFIG_DTW_HC algorithm, and descriptive statistics of PM2.5 concentration in each region are carried out. Secondly, it is found that the influencing factors of PM2.5 concentration are different in different regions. The input variables of the PM2.5 concentration forecasting model in each region are determined by combining the variable correlation with the generalized additive model, and the main influencing factors of PM2.5 concentration in each region are analyzed. Finally, the empirical analysis is conducted based on the input variables selected above, the generalized additive model is established to forecast PM2.5 concentration in each region, the comparison of the evaluation indexes of the training set and the test set proves that the novel PM2.5 concentration forecasting method achieves better prediction effect. Then, the generalized additive model is established by selecting cities from each region, and compared with the auto-regressive integrated moving average (ARIMA) model. The results show that the novel PM2.5 concentration forecasting method can achieve better prediction effect on the premise of ensuring high accuracy.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"203 S613","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel PM2.5 Concentration Forecasting Method Based on LFIG_DTW_HC Algorithm and Generalized Additive Model\",\"authors\":\"Hong Yang, Han Zhang\",\"doi\":\"10.3390/axioms12121118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As air pollution becomes more and more serious, PM2.5 is the primary pollutant, inevitably attracts wide public attention. Therefore, a novel PM2.5 concentration forecasting method based on linear fuzzy information granule_dynamic time warping_hierarchical clustering algorithm (LFIG_DTW_HC algorithm) and generalized additive model is proposed in this paper. First, take 30 provincial capitals in China for example, the cities are divided into seven regions by LFIG_DTW_HC algorithm, and descriptive statistics of PM2.5 concentration in each region are carried out. Secondly, it is found that the influencing factors of PM2.5 concentration are different in different regions. The input variables of the PM2.5 concentration forecasting model in each region are determined by combining the variable correlation with the generalized additive model, and the main influencing factors of PM2.5 concentration in each region are analyzed. Finally, the empirical analysis is conducted based on the input variables selected above, the generalized additive model is established to forecast PM2.5 concentration in each region, the comparison of the evaluation indexes of the training set and the test set proves that the novel PM2.5 concentration forecasting method achieves better prediction effect. Then, the generalized additive model is established by selecting cities from each region, and compared with the auto-regressive integrated moving average (ARIMA) model. The results show that the novel PM2.5 concentration forecasting method can achieve better prediction effect on the premise of ensuring high accuracy.\",\"PeriodicalId\":53148,\"journal\":{\"name\":\"Axioms\",\"volume\":\"203 S613\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms12121118\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms12121118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Novel PM2.5 Concentration Forecasting Method Based on LFIG_DTW_HC Algorithm and Generalized Additive Model
As air pollution becomes more and more serious, PM2.5 is the primary pollutant, inevitably attracts wide public attention. Therefore, a novel PM2.5 concentration forecasting method based on linear fuzzy information granule_dynamic time warping_hierarchical clustering algorithm (LFIG_DTW_HC algorithm) and generalized additive model is proposed in this paper. First, take 30 provincial capitals in China for example, the cities are divided into seven regions by LFIG_DTW_HC algorithm, and descriptive statistics of PM2.5 concentration in each region are carried out. Secondly, it is found that the influencing factors of PM2.5 concentration are different in different regions. The input variables of the PM2.5 concentration forecasting model in each region are determined by combining the variable correlation with the generalized additive model, and the main influencing factors of PM2.5 concentration in each region are analyzed. Finally, the empirical analysis is conducted based on the input variables selected above, the generalized additive model is established to forecast PM2.5 concentration in each region, the comparison of the evaluation indexes of the training set and the test set proves that the novel PM2.5 concentration forecasting method achieves better prediction effect. Then, the generalized additive model is established by selecting cities from each region, and compared with the auto-regressive integrated moving average (ARIMA) model. The results show that the novel PM2.5 concentration forecasting method can achieve better prediction effect on the premise of ensuring high accuracy.
期刊介绍:
Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.