针对芯片泄漏的电源侧通道分析的深度学习方法

IF 0.9 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Amjed Abbas Ahmed, Rana Ali Salim, Mohammad Kamrul Hasan
{"title":"针对芯片泄漏的电源侧通道分析的深度学习方法","authors":"Amjed Abbas Ahmed, Rana Ali Salim, Mohammad Kamrul Hasan","doi":"10.5755/j02.eie.34650","DOIUrl":null,"url":null,"abstract":"Power side channel analysis signal analysis is automated using deep learning. Signal processing and cryptanalytic techniques are necessary components of power side channel analysis. Chip leakages can be found using a classification approach called deep learning. In addition to this, we do this so that the deep learning network can automatically tackle signal processing difficulties such as re-alignment and noise reduction. We were able to break minimally protected Advanced Encryption Standard (AES), as well as masking-countermeasure AES and protected elliptic-curve cryptography (ECC). These results demonstrate that the attacker knowledge required for side channel analysis, which had previously placed a significant emphasis on human abilities, is decreasing. This research will appeal to individuals with a technical background who have an interest in deep learning, side channel analysis, and security.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":"110 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Method for Power Side-Channel Analysis on Chip Leakages\",\"authors\":\"Amjed Abbas Ahmed, Rana Ali Salim, Mohammad Kamrul Hasan\",\"doi\":\"10.5755/j02.eie.34650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power side channel analysis signal analysis is automated using deep learning. Signal processing and cryptanalytic techniques are necessary components of power side channel analysis. Chip leakages can be found using a classification approach called deep learning. In addition to this, we do this so that the deep learning network can automatically tackle signal processing difficulties such as re-alignment and noise reduction. We were able to break minimally protected Advanced Encryption Standard (AES), as well as masking-countermeasure AES and protected elliptic-curve cryptography (ECC). These results demonstrate that the attacker knowledge required for side channel analysis, which had previously placed a significant emphasis on human abilities, is decreasing. This research will appeal to individuals with a technical background who have an interest in deep learning, side channel analysis, and security.\",\"PeriodicalId\":51031,\"journal\":{\"name\":\"Elektronika Ir Elektrotechnika\",\"volume\":\"110 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika Ir Elektrotechnika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.34650\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.34650","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

电力侧信道分析信号分析利用深度学习实现自动化。信号处理和密码分析技术是电源侧信道分析的必要组成部分。芯片泄漏可以通过一种名为深度学习的分类方法找到。除此之外,我们这样做是为了让深度学习网络能够自动解决信号处理难题,如重新对齐和降噪。我们能够破解受最小保护的高级加密标准(AES),以及掩码对策 AES 和受保护的椭圆曲线加密(ECC)。这些结果表明,侧信道分析所需的攻击者知识正在减少,而以前的侧信道分析非常强调人的能力。这项研究将吸引对深度学习、侧信道分析和安全感兴趣的有技术背景的人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Method for Power Side-Channel Analysis on Chip Leakages
Power side channel analysis signal analysis is automated using deep learning. Signal processing and cryptanalytic techniques are necessary components of power side channel analysis. Chip leakages can be found using a classification approach called deep learning. In addition to this, we do this so that the deep learning network can automatically tackle signal processing difficulties such as re-alignment and noise reduction. We were able to break minimally protected Advanced Encryption Standard (AES), as well as masking-countermeasure AES and protected elliptic-curve cryptography (ECC). These results demonstrate that the attacker knowledge required for side channel analysis, which had previously placed a significant emphasis on human abilities, is decreasing. This research will appeal to individuals with a technical background who have an interest in deep learning, side channel analysis, and security.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Elektronika Ir Elektrotechnika
Elektronika Ir Elektrotechnika 工程技术-工程:电子与电气
CiteScore
2.40
自引率
7.70%
发文量
44
审稿时长
24 months
期刊介绍: The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible. The journal publishes regular papers dealing with the following areas, but not limited to: Electronics; Electronic Measurements; Signal Technology; Microelectronics; High Frequency Technology, Microwaves. Electrical Engineering; Renewable Energy; Automation, Robotics; Telecommunications Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信