{"title":"论 R^n 中最大距离最小值的正则性","authors":"A. Gordeev, Y. Teplitskaya","doi":"10.2422/2036-2145.202208_004","DOIUrl":null,"url":null,"abstract":"We study the properties of sets Σ which are the solutions of the maximal distance minimizer problem, i.e. of sets having the minimal length (one-dimensional Hausdorff measure) over the class of closed connected sets Σ ⊂ R n satisfying the inequality","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"132 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On regularity of maximal distance minimizers in R^n\",\"authors\":\"A. Gordeev, Y. Teplitskaya\",\"doi\":\"10.2422/2036-2145.202208_004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the properties of sets Σ which are the solutions of the maximal distance minimizer problem, i.e. of sets having the minimal length (one-dimensional Hausdorff measure) over the class of closed connected sets Σ ⊂ R n satisfying the inequality\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"132 28\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202208_004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202208_004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
我们研究作为最大距离最小化问题解的集合 Σ 的性质,即在满足不等式的封闭连通集合类 Σ ⊂ R n 上具有最小长度(一维 Hausdorff 度量)的集合的性质。
On regularity of maximal distance minimizers in R^n
We study the properties of sets Σ which are the solutions of the maximal distance minimizer problem, i.e. of sets having the minimal length (one-dimensional Hausdorff measure) over the class of closed connected sets Σ ⊂ R n satisfying the inequality