{"title":"高度 h < 2 的 $\\mathbbm{R}^3$ 中与超曲面相关的最大函数的估计值:第二部分:一个几何猜想及其对一般 2 曲面的证明","authors":"Stefan Buschenhenke, I. Ikromov, Detlef Müller","doi":"10.2422/2036-2145.202301_016","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"118 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimates for maximal functions associated to hypersurfaces in $\\\\mathbbm{R}^3$ with height h < 2: part II : A geometric conjecture and its proof for generic 2-surfaces\",\"authors\":\"Stefan Buschenhenke, I. Ikromov, Detlef Müller\",\"doi\":\"10.2422/2036-2145.202301_016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"118 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202301_016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202301_016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimates for maximal functions associated to hypersurfaces in $\mathbbm{R}^3$ with height h < 2: part II : A geometric conjecture and its proof for generic 2-surfaces