基于新型到达律和改进 Salp Swarm 算法的机械臂神经网络终端滑模控制研究

IF 2.2 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Actuators Pub Date : 2023-12-13 DOI:10.3390/act12120464
Jianguo Duan, Hongzhi Zhang, Qinglei Zhang, Jiyun Qin
{"title":"基于新型到达律和改进 Salp Swarm 算法的机械臂神经网络终端滑模控制研究","authors":"Jianguo Duan, Hongzhi Zhang, Qinglei Zhang, Jiyun Qin","doi":"10.3390/act12120464","DOIUrl":null,"url":null,"abstract":"Modeling errors and external disturbances have significant impacts on the control accuracy of robotic arm trajectory tracking. To address this issue, this paper proposes a novel method, the neural network terminal sliding mode control (ALSSA-RBFTSM), which combines fast nonsingular terminal sliding mode (FNTSM) control, radial basis function (RBF) neural network, and an improved salp swarm algorithm (ALSSA). This method effectively enhances the trajectory tracking accuracy of robotic arms under the influence of uncertain factors. Firstly, the fast nonsingular terminal sliding surface is utilized to enhance the convergence speed of the system and achieve finite-time convergence. Building upon this, a novel multi-power reaching law is proposed to reduce system chattering. Secondly, the RBF neural network is utilized to estimate and compensate for modeling errors and external disturbances. Then, an improved salp swarm algorithm is proposed to optimize the parameters of the controller. Finally, the stability of the control system is demonstrated using the Lyapunov theorem. Simulation and experimental results demonstrate that the proposed ALSSA-RBFTSM algorithm exhibits superior robustness and trajectory tracking performance compared to the global fast terminal sliding mode (GFTSM) algorithm and the RBF neural network fast nonsingular terminal sliding mode (RBF-FNTSM) algorithm.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"112 22","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Neural Network Terminal Sliding Mode Control of Robotic Arms Based on Novel Reaching Law and Improved Salp Swarm Algorithm\",\"authors\":\"Jianguo Duan, Hongzhi Zhang, Qinglei Zhang, Jiyun Qin\",\"doi\":\"10.3390/act12120464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling errors and external disturbances have significant impacts on the control accuracy of robotic arm trajectory tracking. To address this issue, this paper proposes a novel method, the neural network terminal sliding mode control (ALSSA-RBFTSM), which combines fast nonsingular terminal sliding mode (FNTSM) control, radial basis function (RBF) neural network, and an improved salp swarm algorithm (ALSSA). This method effectively enhances the trajectory tracking accuracy of robotic arms under the influence of uncertain factors. Firstly, the fast nonsingular terminal sliding surface is utilized to enhance the convergence speed of the system and achieve finite-time convergence. Building upon this, a novel multi-power reaching law is proposed to reduce system chattering. Secondly, the RBF neural network is utilized to estimate and compensate for modeling errors and external disturbances. Then, an improved salp swarm algorithm is proposed to optimize the parameters of the controller. Finally, the stability of the control system is demonstrated using the Lyapunov theorem. Simulation and experimental results demonstrate that the proposed ALSSA-RBFTSM algorithm exhibits superior robustness and trajectory tracking performance compared to the global fast terminal sliding mode (GFTSM) algorithm and the RBF neural network fast nonsingular terminal sliding mode (RBF-FNTSM) algorithm.\",\"PeriodicalId\":48584,\"journal\":{\"name\":\"Actuators\",\"volume\":\"112 22\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Actuators\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/act12120464\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act12120464","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

建模误差和外部干扰对机械臂轨迹跟踪的控制精度有很大影响。针对这一问题,本文提出了一种新方法--神经网络末端滑模控制(ALSSA-RBFTSM),它结合了快速非奇异末端滑模(FNTSM)控制、径向基函数(RBF)神经网络和改进的萨尔普蜂群算法(ALSSA)。该方法有效提高了机械臂在不确定因素影响下的轨迹跟踪精度。首先,利用快速非奇异终端滑动面提高系统收敛速度,实现有限时间收敛。在此基础上,提出了一种新的多功率达到定律,以减少系统颤振。其次,利用 RBF 神经网络来估计和补偿建模误差和外部干扰。然后,提出了一种改进的 salp 蜂群算法来优化控制器的参数。最后,利用 Lyapunov 定理证明了控制系统的稳定性。仿真和实验结果表明,与全局快速末端滑动模(GFTSM)算法和 RBF 神经网络快速非奇异末端滑动模(RBF-FNTSM)算法相比,所提出的 ALSSA-RBFTSM 算法具有更优越的鲁棒性和轨迹跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Neural Network Terminal Sliding Mode Control of Robotic Arms Based on Novel Reaching Law and Improved Salp Swarm Algorithm
Modeling errors and external disturbances have significant impacts on the control accuracy of robotic arm trajectory tracking. To address this issue, this paper proposes a novel method, the neural network terminal sliding mode control (ALSSA-RBFTSM), which combines fast nonsingular terminal sliding mode (FNTSM) control, radial basis function (RBF) neural network, and an improved salp swarm algorithm (ALSSA). This method effectively enhances the trajectory tracking accuracy of robotic arms under the influence of uncertain factors. Firstly, the fast nonsingular terminal sliding surface is utilized to enhance the convergence speed of the system and achieve finite-time convergence. Building upon this, a novel multi-power reaching law is proposed to reduce system chattering. Secondly, the RBF neural network is utilized to estimate and compensate for modeling errors and external disturbances. Then, an improved salp swarm algorithm is proposed to optimize the parameters of the controller. Finally, the stability of the control system is demonstrated using the Lyapunov theorem. Simulation and experimental results demonstrate that the proposed ALSSA-RBFTSM algorithm exhibits superior robustness and trajectory tracking performance compared to the global fast terminal sliding mode (GFTSM) algorithm and the RBF neural network fast nonsingular terminal sliding mode (RBF-FNTSM) algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Actuators
Actuators Mathematics-Control and Optimization
CiteScore
3.90
自引率
15.40%
发文量
315
审稿时长
11 weeks
期刊介绍: Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信