{"title":"M-PACE 期间观测到的北极混合相层积物中二次生冰的云解析 ICON 模拟","authors":"A. Possner, K. Pfannkuch, V. Ramadoss","doi":"10.1175/jas-d-23-0069.1","DOIUrl":null,"url":null,"abstract":"\nField measurements and modeling studies suggest that secondary ice production (SIP) may close the gap between observed Arctic ice nucleating particle (INP) concentrations and ice crystal number concentrations (ni). Here, we explore sensitivities with respect to the complexity of different INP parameterizations under the premise that ni is governed by SIP. Idealized, cloud-resolving simulations are performed for the marine cold air outbreak cloud deck sampled during M-PACE with the ICOsahedralNonhydrostatic (ICON) model. The impact of the droplet shattering (DS) of raindrops and collisional breakup (BR) in addition to the existing Hallet-Mossop rime splintering mechanism were investigated. Overall, 12 different model experiments (12 h runs) were performed and analyzed. Despite the considerable amount of uncertainty remaining with regard to SIP mechanisms and their process representation in numerical models, we conclude from these experiments that: (i) only simulations where DS dominates the SIP signal (potentially amplified by BR) capture observed ice-phase and liquid-phase cloud properties, and (ii) SIP events cluster around the convective outflow region and are structurally linked to mesoscale cloud organization. In addition, interactions with primary nucleation parameterizations of varied complexity were investigated. Here, our simulations show that: (i) a stable long-lived mixed-phase cloud (MPC) can be maintained in the absence of primary nucleation once SIP is established, (ii) experiments using a computationally more efficient relaxation-based parameterization of primary nucleation are statistically invariant from simulations considering prognostic INP, and (iii) primary nucleation at cloud-top controls the areal extent of the mixed-phase cloud region, and reduces SIP efficacy via DS due increased depletion of cloud liquid throughout the entire cloud column.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":"26 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloud-Resolving ICON Simulations of Secondary Ice Production in Arctic Mixed-Phase Stratocumuli Observed during M-PACE\",\"authors\":\"A. Possner, K. Pfannkuch, V. Ramadoss\",\"doi\":\"10.1175/jas-d-23-0069.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nField measurements and modeling studies suggest that secondary ice production (SIP) may close the gap between observed Arctic ice nucleating particle (INP) concentrations and ice crystal number concentrations (ni). Here, we explore sensitivities with respect to the complexity of different INP parameterizations under the premise that ni is governed by SIP. Idealized, cloud-resolving simulations are performed for the marine cold air outbreak cloud deck sampled during M-PACE with the ICOsahedralNonhydrostatic (ICON) model. The impact of the droplet shattering (DS) of raindrops and collisional breakup (BR) in addition to the existing Hallet-Mossop rime splintering mechanism were investigated. Overall, 12 different model experiments (12 h runs) were performed and analyzed. Despite the considerable amount of uncertainty remaining with regard to SIP mechanisms and their process representation in numerical models, we conclude from these experiments that: (i) only simulations where DS dominates the SIP signal (potentially amplified by BR) capture observed ice-phase and liquid-phase cloud properties, and (ii) SIP events cluster around the convective outflow region and are structurally linked to mesoscale cloud organization. In addition, interactions with primary nucleation parameterizations of varied complexity were investigated. Here, our simulations show that: (i) a stable long-lived mixed-phase cloud (MPC) can be maintained in the absence of primary nucleation once SIP is established, (ii) experiments using a computationally more efficient relaxation-based parameterization of primary nucleation are statistically invariant from simulations considering prognostic INP, and (iii) primary nucleation at cloud-top controls the areal extent of the mixed-phase cloud region, and reduces SIP efficacy via DS due increased depletion of cloud liquid throughout the entire cloud column.\",\"PeriodicalId\":17231,\"journal\":{\"name\":\"Journal of the Atmospheric Sciences\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jas-d-23-0069.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jas-d-23-0069.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Cloud-Resolving ICON Simulations of Secondary Ice Production in Arctic Mixed-Phase Stratocumuli Observed during M-PACE
Field measurements and modeling studies suggest that secondary ice production (SIP) may close the gap between observed Arctic ice nucleating particle (INP) concentrations and ice crystal number concentrations (ni). Here, we explore sensitivities with respect to the complexity of different INP parameterizations under the premise that ni is governed by SIP. Idealized, cloud-resolving simulations are performed for the marine cold air outbreak cloud deck sampled during M-PACE with the ICOsahedralNonhydrostatic (ICON) model. The impact of the droplet shattering (DS) of raindrops and collisional breakup (BR) in addition to the existing Hallet-Mossop rime splintering mechanism were investigated. Overall, 12 different model experiments (12 h runs) were performed and analyzed. Despite the considerable amount of uncertainty remaining with regard to SIP mechanisms and their process representation in numerical models, we conclude from these experiments that: (i) only simulations where DS dominates the SIP signal (potentially amplified by BR) capture observed ice-phase and liquid-phase cloud properties, and (ii) SIP events cluster around the convective outflow region and are structurally linked to mesoscale cloud organization. In addition, interactions with primary nucleation parameterizations of varied complexity were investigated. Here, our simulations show that: (i) a stable long-lived mixed-phase cloud (MPC) can be maintained in the absence of primary nucleation once SIP is established, (ii) experiments using a computationally more efficient relaxation-based parameterization of primary nucleation are statistically invariant from simulations considering prognostic INP, and (iii) primary nucleation at cloud-top controls the areal extent of the mixed-phase cloud region, and reduces SIP efficacy via DS due increased depletion of cloud liquid throughout the entire cloud column.
期刊介绍:
The Journal of the Atmospheric Sciences (JAS) publishes basic research related to the physics, dynamics, and chemistry of the atmosphere of Earth and other planets, with emphasis on the quantitative and deductive aspects of the subject.
The links provide detailed information for readers, authors, reviewers, and those who wish to submit a manuscript for consideration.