Tohya Kanahama, Carol Lee Chalermsin, Motohiro Sato
{"title":"带旋转弹簧的重柱的机械不稳定性","authors":"Tohya Kanahama, Carol Lee Chalermsin, Motohiro Sato","doi":"10.1093/jom/ufad035","DOIUrl":null,"url":null,"abstract":"\n In previous research on the mechanical instability of trees based on mechanical theory, wild tree has been modeled as a cantilever which was perfectly attached to the ground. However, experimental research has identified two failure modes, including root turnover and self-buckling of the trunk. This suggests that the imperfect fixation caused by root-soil interaction must be considered when discussing tree stability. The purpose of this study is to clarify the self-buckling characteristics of wild trees considering soil instability. To account for the resistance moment caused by the interaction between the root and soil, trees as cantilevers fixed to the ground by a rotational spring were modeled. In this model, the self-buckling problem was formulated considering the rotational rigidity of the spring, and the formula derived for the critical height and buckling mode. As a result, the formula for critical height considering rotational rigidity was obtained, and it was found that the buckling modes can be classified into the rigid-body mode and beam mode based on the rotational rigidity. By comparing this result with the statistical law based on the measurement of real trees reported in previous research, it was determined that real trees were designed based on beam mode. This suggests that the wild tree skillfully balances the moment of resistance caused by the interaction between the root and soil to prevent “uprooting,” which is extremely fatal for trees. Moreover, it was also found that the safety factor of trees for self-buckling is ensured enough to prevent the beam mode.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Instability of Heavy Column with Rotational Spring\",\"authors\":\"Tohya Kanahama, Carol Lee Chalermsin, Motohiro Sato\",\"doi\":\"10.1093/jom/ufad035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In previous research on the mechanical instability of trees based on mechanical theory, wild tree has been modeled as a cantilever which was perfectly attached to the ground. However, experimental research has identified two failure modes, including root turnover and self-buckling of the trunk. This suggests that the imperfect fixation caused by root-soil interaction must be considered when discussing tree stability. The purpose of this study is to clarify the self-buckling characteristics of wild trees considering soil instability. To account for the resistance moment caused by the interaction between the root and soil, trees as cantilevers fixed to the ground by a rotational spring were modeled. In this model, the self-buckling problem was formulated considering the rotational rigidity of the spring, and the formula derived for the critical height and buckling mode. As a result, the formula for critical height considering rotational rigidity was obtained, and it was found that the buckling modes can be classified into the rigid-body mode and beam mode based on the rotational rigidity. By comparing this result with the statistical law based on the measurement of real trees reported in previous research, it was determined that real trees were designed based on beam mode. This suggests that the wild tree skillfully balances the moment of resistance caused by the interaction between the root and soil to prevent “uprooting,” which is extremely fatal for trees. Moreover, it was also found that the safety factor of trees for self-buckling is ensured enough to prevent the beam mode.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufad035\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufad035","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Mechanical Instability of Heavy Column with Rotational Spring
In previous research on the mechanical instability of trees based on mechanical theory, wild tree has been modeled as a cantilever which was perfectly attached to the ground. However, experimental research has identified two failure modes, including root turnover and self-buckling of the trunk. This suggests that the imperfect fixation caused by root-soil interaction must be considered when discussing tree stability. The purpose of this study is to clarify the self-buckling characteristics of wild trees considering soil instability. To account for the resistance moment caused by the interaction between the root and soil, trees as cantilevers fixed to the ground by a rotational spring were modeled. In this model, the self-buckling problem was formulated considering the rotational rigidity of the spring, and the formula derived for the critical height and buckling mode. As a result, the formula for critical height considering rotational rigidity was obtained, and it was found that the buckling modes can be classified into the rigid-body mode and beam mode based on the rotational rigidity. By comparing this result with the statistical law based on the measurement of real trees reported in previous research, it was determined that real trees were designed based on beam mode. This suggests that the wild tree skillfully balances the moment of resistance caused by the interaction between the root and soil to prevent “uprooting,” which is extremely fatal for trees. Moreover, it was also found that the safety factor of trees for self-buckling is ensured enough to prevent the beam mode.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.