关于卡普托-哈达玛德分式脉冲积分微分方程的分式边界值问题的一些结果

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Y. Alruwaily, Kuppusamy Venkatachalam, El-sayed El-hady
{"title":"关于卡普托-哈达玛德分式脉冲积分微分方程的分式边界值问题的一些结果","authors":"Y. Alruwaily, Kuppusamy Venkatachalam, El-sayed El-hady","doi":"10.3390/fractalfract7120884","DOIUrl":null,"url":null,"abstract":"The results for a new modeling integral boundary value problem (IBVP) using Caputo-Hadamard impulsive fractional integro-differential equations (C-HIFI-DE) with Banach space are investigated, along with the existence and uniqueness of solutions. The Krasnoselskii fixed-point theorem (KFPT) and the Banach contraction principle (BCP) serve as the basis of this unique strategy, and are used to achieve the desired results. We develop the illustrated examples at the end of the paper to support the validity of the theoretical statements.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"180 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Results on Fractional Boundary Value Problem for Caputo-Hadamard Fractional Impulsive Integro Differential Equations\",\"authors\":\"Y. Alruwaily, Kuppusamy Venkatachalam, El-sayed El-hady\",\"doi\":\"10.3390/fractalfract7120884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The results for a new modeling integral boundary value problem (IBVP) using Caputo-Hadamard impulsive fractional integro-differential equations (C-HIFI-DE) with Banach space are investigated, along with the existence and uniqueness of solutions. The Krasnoselskii fixed-point theorem (KFPT) and the Banach contraction principle (BCP) serve as the basis of this unique strategy, and are used to achieve the desired results. We develop the illustrated examples at the end of the paper to support the validity of the theoretical statements.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"180 3\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7120884\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7120884","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

研究了使用巴拿赫空间的卡普托-哈达玛德脉冲分数积分微分方程(C-HIFI-DE)的新建模积分边界值问题(IBVP)的结果,以及解的存在性和唯一性。Krasnoselskii 定点定理(KFPT)和巴纳赫收缩原理(BCP)是这一独特策略的基础,并被用于实现预期结果。我们将在论文末尾举例说明,以支持理论陈述的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Results on Fractional Boundary Value Problem for Caputo-Hadamard Fractional Impulsive Integro Differential Equations
The results for a new modeling integral boundary value problem (IBVP) using Caputo-Hadamard impulsive fractional integro-differential equations (C-HIFI-DE) with Banach space are investigated, along with the existence and uniqueness of solutions. The Krasnoselskii fixed-point theorem (KFPT) and the Banach contraction principle (BCP) serve as the basis of this unique strategy, and are used to achieve the desired results. We develop the illustrated examples at the end of the paper to support the validity of the theoretical statements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信