{"title":"在设计中考虑机器学习的预测误差","authors":"Xiaoping Du","doi":"10.1115/1.4064278","DOIUrl":null,"url":null,"abstract":"\n Machine learning is gaining prominence in mechanical design, offering cost-effective surrogate models to replace computationally expensive models. Nevertheless, concerns persist regarding the accuracy of these models, especially when applied to safety-critical products. To address this challenge, this study investigates methods to account for model prediction errors by incorporating epistemic uncertainty within surrogate models while managing aleatory uncertainty in input variables. The paper clarifies key aspects of modeling coupled epistemic and aleatory uncertainty when using surrogate models derived from noise-free training data. Specifically, the study concentrates on quantifying the impacts of coupled uncertainty in mechanical design through the development of numerical methods based on the concept of the most probable point. This method is particularly relevant for mechanical component design, where failure prevention holds paramount importance, and the probability of failure is low. It is applicable to design problems characterized by probability distributions governing aleatory and epistemic uncertainties in model inputs and predictions. The proposed method is demonstrated using shaft and beam designs as two illustrative examples. The results demonstrate the method's effectiveness in quantifying and mitigating the influence of coupled uncertainty in the design process.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"76 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accounting for Machine Learning Prediction Errors in Design\",\"authors\":\"Xiaoping Du\",\"doi\":\"10.1115/1.4064278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Machine learning is gaining prominence in mechanical design, offering cost-effective surrogate models to replace computationally expensive models. Nevertheless, concerns persist regarding the accuracy of these models, especially when applied to safety-critical products. To address this challenge, this study investigates methods to account for model prediction errors by incorporating epistemic uncertainty within surrogate models while managing aleatory uncertainty in input variables. The paper clarifies key aspects of modeling coupled epistemic and aleatory uncertainty when using surrogate models derived from noise-free training data. Specifically, the study concentrates on quantifying the impacts of coupled uncertainty in mechanical design through the development of numerical methods based on the concept of the most probable point. This method is particularly relevant for mechanical component design, where failure prevention holds paramount importance, and the probability of failure is low. It is applicable to design problems characterized by probability distributions governing aleatory and epistemic uncertainties in model inputs and predictions. The proposed method is demonstrated using shaft and beam designs as two illustrative examples. The results demonstrate the method's effectiveness in quantifying and mitigating the influence of coupled uncertainty in the design process.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064278\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064278","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Accounting for Machine Learning Prediction Errors in Design
Machine learning is gaining prominence in mechanical design, offering cost-effective surrogate models to replace computationally expensive models. Nevertheless, concerns persist regarding the accuracy of these models, especially when applied to safety-critical products. To address this challenge, this study investigates methods to account for model prediction errors by incorporating epistemic uncertainty within surrogate models while managing aleatory uncertainty in input variables. The paper clarifies key aspects of modeling coupled epistemic and aleatory uncertainty when using surrogate models derived from noise-free training data. Specifically, the study concentrates on quantifying the impacts of coupled uncertainty in mechanical design through the development of numerical methods based on the concept of the most probable point. This method is particularly relevant for mechanical component design, where failure prevention holds paramount importance, and the probability of failure is low. It is applicable to design problems characterized by probability distributions governing aleatory and epistemic uncertainties in model inputs and predictions. The proposed method is demonstrated using shaft and beam designs as two illustrative examples. The results demonstrate the method's effectiveness in quantifying and mitigating the influence of coupled uncertainty in the design process.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.