将 TiO2 纳米层涂碳作为 Pt 支持物用于增强甲醇氧化反应

IF 2.7 4区 工程技术 Q3 ELECTROCHEMISTRY
Weiqi Zhang, Yuan Jin, Meihui Tan, Huiyuan Liu, Qiang Ma, Qian Xu, Huaneng Su
{"title":"将 TiO2 纳米层涂碳作为 Pt 支持物用于增强甲醇氧化反应","authors":"Weiqi Zhang, Yuan Jin, Meihui Tan, Huiyuan Liu, Qiang Ma, Qian Xu, Huaneng Su","doi":"10.1115/1.4064290","DOIUrl":null,"url":null,"abstract":"\n To facilitate the large-scale application of direct methanol fuel cells (DMFCs), the issue of low Pt/C durability due to Pt degradation and carbon corrosion in harsh DMFC operating conditions must be addressed. A promising strategy is to hybridize metal oxides with carbon materials, resulting in a durable and conductive support that exhibits a strong metal-support interaction (SMSI) effect on platinum nanoparticles (Pt NPs). In this study, we introduced a TiO2 coating on carbon black, creating a TiO2 nanolayer between Pt and carbon black. The nanolayer not only protects the carbon black but also activates the SMSI effect on Pt. The resulting Pt/C@TiO2 electrocatalyst exhibits superior durability than commercial Pt/C. After the accelerated durability test, the mass activity loss of the methanol oxidation reaction (MOR) of Pt/C@TiO2 (32%) is significantly lower than that of Pt/C (46.8%). Moreover, the MOR activity of Pt/C@TiO2 is higher than Pt/C as well. It suggests that Pt/C@TiO2 shows great potential as a highly durable and active electrocatalyst for DMFCs.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"2010 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TiO2 nanolayer coated carbon as Pt support for enhanced methanol oxidation reaction\",\"authors\":\"Weiqi Zhang, Yuan Jin, Meihui Tan, Huiyuan Liu, Qiang Ma, Qian Xu, Huaneng Su\",\"doi\":\"10.1115/1.4064290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n To facilitate the large-scale application of direct methanol fuel cells (DMFCs), the issue of low Pt/C durability due to Pt degradation and carbon corrosion in harsh DMFC operating conditions must be addressed. A promising strategy is to hybridize metal oxides with carbon materials, resulting in a durable and conductive support that exhibits a strong metal-support interaction (SMSI) effect on platinum nanoparticles (Pt NPs). In this study, we introduced a TiO2 coating on carbon black, creating a TiO2 nanolayer between Pt and carbon black. The nanolayer not only protects the carbon black but also activates the SMSI effect on Pt. The resulting Pt/C@TiO2 electrocatalyst exhibits superior durability than commercial Pt/C. After the accelerated durability test, the mass activity loss of the methanol oxidation reaction (MOR) of Pt/C@TiO2 (32%) is significantly lower than that of Pt/C (46.8%). Moreover, the MOR activity of Pt/C@TiO2 is higher than Pt/C as well. It suggests that Pt/C@TiO2 shows great potential as a highly durable and active electrocatalyst for DMFCs.\",\"PeriodicalId\":15579,\"journal\":{\"name\":\"Journal of Electrochemical Energy Conversion and Storage\",\"volume\":\"2010 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Energy Conversion and Storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064290\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064290","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

为了促进直接甲醇燃料电池(DMFC)的大规模应用,必须解决在苛刻的 DMFC 运行条件下由于铂降解和碳腐蚀造成的 Pt/C 耐久性低的问题。一种很有前景的策略是将金属氧化物与碳材料杂化,从而产生一种耐久的导电支撑物,这种支撑物对铂纳米粒子(Pt NPs)具有很强的金属-支撑相互作用(SMSI)效应。在这项研究中,我们在炭黑上引入了 TiO2 涂层,在铂和炭黑之间形成了一个 TiO2 纳米层。该纳米层不仅能保护炭黑,还能激活铂的 SMSI 效应。由此产生的 Pt/C@TiO2 电催化剂的耐久性优于商用 Pt/C。经过加速耐久性测试,Pt/C@TiO2 的甲醇氧化反应(MOR)质量活性损失(32%)明显低于 Pt/C(46.8%)。此外,Pt/C@TiO2 的甲醇氧化活性也高于 Pt/C。这表明,Pt/C@TiO2 作为 DMFCs 的高耐久性和高活性电催化剂具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TiO2 nanolayer coated carbon as Pt support for enhanced methanol oxidation reaction
To facilitate the large-scale application of direct methanol fuel cells (DMFCs), the issue of low Pt/C durability due to Pt degradation and carbon corrosion in harsh DMFC operating conditions must be addressed. A promising strategy is to hybridize metal oxides with carbon materials, resulting in a durable and conductive support that exhibits a strong metal-support interaction (SMSI) effect on platinum nanoparticles (Pt NPs). In this study, we introduced a TiO2 coating on carbon black, creating a TiO2 nanolayer between Pt and carbon black. The nanolayer not only protects the carbon black but also activates the SMSI effect on Pt. The resulting Pt/C@TiO2 electrocatalyst exhibits superior durability than commercial Pt/C. After the accelerated durability test, the mass activity loss of the methanol oxidation reaction (MOR) of Pt/C@TiO2 (32%) is significantly lower than that of Pt/C (46.8%). Moreover, the MOR activity of Pt/C@TiO2 is higher than Pt/C as well. It suggests that Pt/C@TiO2 shows great potential as a highly durable and active electrocatalyst for DMFCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
69
期刊介绍: The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信