{"title":"利用 HyImpulse 混合动力推进器设计火星上升飞行器","authors":"Maël Renault, V. Lappas","doi":"10.3390/aerospace10121030","DOIUrl":null,"url":null,"abstract":"The recent growth in maturity of paraffin-based hybrid propulsion systems reassesses the possibility to design an alternative Mars Ascent Vehicle (MAV) propelled by a European hybrid motor. As part of the Mars Sample Return (MSR) campaign, a Hybrid MAV would present potential advantages over the existent solid concept funded by NASA through offering increased performance, higher thermal resilience, and lower Gross Lift-Off Mass (GLOM). This study looks at the preliminary design of a two-stage European MAV equipped with HyImpulse’s hybrid engine called the Hyplox10. This Hybrid MAV utilizes the advantages inherent to this type of propulsion to propose an alternative MAV concept. After a careful analysis of previous MAV architectures from the literature, the vehicle is sized with all its components such as the propellant tanks and nozzle, and the configuration of the rocket is established. A detailed design of the primary structure is addressed. This is followed by a Finite Element Analysis (FEA), evaluating the structural integrity under the challenging conditions of Entry, Descent, and Landing (EDL) on Mars, considering both static and dynamic analyses. The outcome is a Hybrid MAV design that demonstrates feasibility and resilience in the harsh Martian environment, boasting a GLOM of less than 300 kg.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"51 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Mars Ascent Vehicle Using HyImpulse’s Hybrid Propulsion\",\"authors\":\"Maël Renault, V. Lappas\",\"doi\":\"10.3390/aerospace10121030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent growth in maturity of paraffin-based hybrid propulsion systems reassesses the possibility to design an alternative Mars Ascent Vehicle (MAV) propelled by a European hybrid motor. As part of the Mars Sample Return (MSR) campaign, a Hybrid MAV would present potential advantages over the existent solid concept funded by NASA through offering increased performance, higher thermal resilience, and lower Gross Lift-Off Mass (GLOM). This study looks at the preliminary design of a two-stage European MAV equipped with HyImpulse’s hybrid engine called the Hyplox10. This Hybrid MAV utilizes the advantages inherent to this type of propulsion to propose an alternative MAV concept. After a careful analysis of previous MAV architectures from the literature, the vehicle is sized with all its components such as the propellant tanks and nozzle, and the configuration of the rocket is established. A detailed design of the primary structure is addressed. This is followed by a Finite Element Analysis (FEA), evaluating the structural integrity under the challenging conditions of Entry, Descent, and Landing (EDL) on Mars, considering both static and dynamic analyses. The outcome is a Hybrid MAV design that demonstrates feasibility and resilience in the harsh Martian environment, boasting a GLOM of less than 300 kg.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace10121030\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10121030","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
摘要
最近,基于石蜡的混合推进系统日趋成熟,这重新评估了设计一种由欧洲混合发动机推进的替代火星上升飞行器(MAV)的可能性。作为火星取样返回(MSR)活动的一部分,混合动力 MAV 将通过提供更高的性能、更强的热弹性和更低的升空总质量(GLOM),与 NASA 资助的现有固体概念相比具有潜在优势。本研究探讨了配备 HyImpulse 混合动力发动机(称为 Hyplox10)的欧洲双级 MAV 的初步设计。该混合动力飞行器利用这种推进方式的固有优势,提出了另一种飞行器概念。在仔细分析了以往文献中的无人飞行器结构后,确定了飞行器的尺寸和所有组件,如推进剂罐和喷嘴,并确定了火箭的配置。然后对主要结构进行详细设计。随后进行有限元分析(FEA),评估在火星进入、下降和着陆(EDL)的挑战性条件下的结构完整性,同时考虑静态和动态分析。结果是混合动力飞行器的设计,证明了在恶劣的火星环境中的可行性和适应性,其GLOM小于300千克。
Design of a Mars Ascent Vehicle Using HyImpulse’s Hybrid Propulsion
The recent growth in maturity of paraffin-based hybrid propulsion systems reassesses the possibility to design an alternative Mars Ascent Vehicle (MAV) propelled by a European hybrid motor. As part of the Mars Sample Return (MSR) campaign, a Hybrid MAV would present potential advantages over the existent solid concept funded by NASA through offering increased performance, higher thermal resilience, and lower Gross Lift-Off Mass (GLOM). This study looks at the preliminary design of a two-stage European MAV equipped with HyImpulse’s hybrid engine called the Hyplox10. This Hybrid MAV utilizes the advantages inherent to this type of propulsion to propose an alternative MAV concept. After a careful analysis of previous MAV architectures from the literature, the vehicle is sized with all its components such as the propellant tanks and nozzle, and the configuration of the rocket is established. A detailed design of the primary structure is addressed. This is followed by a Finite Element Analysis (FEA), evaluating the structural integrity under the challenging conditions of Entry, Descent, and Landing (EDL) on Mars, considering both static and dynamic analyses. The outcome is a Hybrid MAV design that demonstrates feasibility and resilience in the harsh Martian environment, boasting a GLOM of less than 300 kg.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.