浮游植物种间竞争食物资源的数学模型

Q3 Mathematics
A. Abakumov, I.S. Kozitskaya
{"title":"浮游植物种间竞争食物资源的数学模型","authors":"A. Abakumov, I.S. Kozitskaya","doi":"10.17537/2023.18.568","DOIUrl":null,"url":null,"abstract":"\n The phytoplankton in an aquatic ecosystem is the basis of its life activity and the main producing link. The functioning of phytoplankton in same time depends on environmental factors: mineral nutrition, photosynthetically active solar radiation, water temperature and other less significant ones. Sunlight is a stable factor, varying predictably over time and space. The water temperature is the small regulatory factor. Concentrations of mineral substances can change quite quickly and significantly, this much influences on plant organisms. Thus, mineral nutrition is a basic environmental factor of influence to phytoplankton. On the other hand, in large aquatic basin such as seas and oceanic areas the distribution of living organisms is very heterogeneous in space. These two aspects – nutrient and spatial heterogeneity – are the focus of this article. A model of competitive interaction is considered using the example of two species of phytoplankton. The phytoplankton move passively in water what is simulated by the diffusion process. The model contains one non-trivial stationary and spatially homogeneous equilibrium and two trivial ones, i.e. degenerate in at least one species of phytoplankton. Trivial equilibria are stable only in some “degenerate” situations. The non-trivial equilibrium in “normal” conditions is stable to temporal and spatial disturbances. The behavior of solutions near a nontrivial equilibrium for a stationary living environment and in cases of its nonstationary is studied. Perturbation of a nontrivial equilibrium in a stationary environment leads to relatively long-term deviations from equilibrium and a slow return to it. The instability of trivial equilibria increases the spatial heterogeneity of solutions. At the same time, the nontrivial equilibrium computationally demonstrates weak properties of global stability in time. The unsteadiness of the environment is simulated by the unsteadiness of the influx of nutrients. It has been shown that the distribution of nutrients can lead to significant heterogeneity in the distribution of individuals across the spatial habitat.\n","PeriodicalId":53525,"journal":{"name":"Mathematical Biology and Bioinformatics","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Model of Phytoplankton Interspecific Competition for Food Resource\",\"authors\":\"A. Abakumov, I.S. Kozitskaya\",\"doi\":\"10.17537/2023.18.568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The phytoplankton in an aquatic ecosystem is the basis of its life activity and the main producing link. The functioning of phytoplankton in same time depends on environmental factors: mineral nutrition, photosynthetically active solar radiation, water temperature and other less significant ones. Sunlight is a stable factor, varying predictably over time and space. The water temperature is the small regulatory factor. Concentrations of mineral substances can change quite quickly and significantly, this much influences on plant organisms. Thus, mineral nutrition is a basic environmental factor of influence to phytoplankton. On the other hand, in large aquatic basin such as seas and oceanic areas the distribution of living organisms is very heterogeneous in space. These two aspects – nutrient and spatial heterogeneity – are the focus of this article. A model of competitive interaction is considered using the example of two species of phytoplankton. The phytoplankton move passively in water what is simulated by the diffusion process. The model contains one non-trivial stationary and spatially homogeneous equilibrium and two trivial ones, i.e. degenerate in at least one species of phytoplankton. Trivial equilibria are stable only in some “degenerate” situations. The non-trivial equilibrium in “normal” conditions is stable to temporal and spatial disturbances. The behavior of solutions near a nontrivial equilibrium for a stationary living environment and in cases of its nonstationary is studied. Perturbation of a nontrivial equilibrium in a stationary environment leads to relatively long-term deviations from equilibrium and a slow return to it. The instability of trivial equilibria increases the spatial heterogeneity of solutions. At the same time, the nontrivial equilibrium computationally demonstrates weak properties of global stability in time. The unsteadiness of the environment is simulated by the unsteadiness of the influx of nutrients. It has been shown that the distribution of nutrients can lead to significant heterogeneity in the distribution of individuals across the spatial habitat.\\n\",\"PeriodicalId\":53525,\"journal\":{\"name\":\"Mathematical Biology and Bioinformatics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biology and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17537/2023.18.568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17537/2023.18.568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

浮游植物是水生生态系统生命活动的基础和主要生产环节。浮游植物在同一时间内的功能取决于环境因素:矿物质营养、光合有效太阳辐射、水温和其他次要因素。阳光是一个稳定因素,随时间和空间的变化而变化。水温是较小的调节因素。矿物质的浓度变化相当迅速和显著,这对植物有机体影响很大。因此,矿物质营养是影响浮游植物的基本环境因素。另一方面,在海洋等大型水域中,生物分布在空间上非常不均匀。这两个方面--营养和空间异质性--是本文的重点。本文以两种浮游植物为例,探讨了竞争性相互作用的模型。浮游植物在扩散过程模拟的水中被动运动。该模型包含一个非琐碎的静态和空间均匀平衡,以及两个琐碎平衡,即至少有一种浮游植物的平衡是退化的。琐碎平衡只有在某些 "退化 "情况下才稳定。在 "正常 "条件下,非琐碎平衡对时间和空间干扰都是稳定的。研究了静止生物环境和非静止情况下非三维平衡附近的解的行为。对静止环境中的非三维平衡的扰动会导致相对长期地偏离平衡,并缓慢地恢复平衡。琐碎平衡的不稳定性增加了解的空间异质性。同时,非琐碎平衡在计算上表现出时间上全局稳定性的弱特性。养分流入的不稳定性模拟了环境的不稳定性。研究表明,营养物质的分布会导致个体在整个空间栖息地分布的显著异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Model of Phytoplankton Interspecific Competition for Food Resource
The phytoplankton in an aquatic ecosystem is the basis of its life activity and the main producing link. The functioning of phytoplankton in same time depends on environmental factors: mineral nutrition, photosynthetically active solar radiation, water temperature and other less significant ones. Sunlight is a stable factor, varying predictably over time and space. The water temperature is the small regulatory factor. Concentrations of mineral substances can change quite quickly and significantly, this much influences on plant organisms. Thus, mineral nutrition is a basic environmental factor of influence to phytoplankton. On the other hand, in large aquatic basin such as seas and oceanic areas the distribution of living organisms is very heterogeneous in space. These two aspects – nutrient and spatial heterogeneity – are the focus of this article. A model of competitive interaction is considered using the example of two species of phytoplankton. The phytoplankton move passively in water what is simulated by the diffusion process. The model contains one non-trivial stationary and spatially homogeneous equilibrium and two trivial ones, i.e. degenerate in at least one species of phytoplankton. Trivial equilibria are stable only in some “degenerate” situations. The non-trivial equilibrium in “normal” conditions is stable to temporal and spatial disturbances. The behavior of solutions near a nontrivial equilibrium for a stationary living environment and in cases of its nonstationary is studied. Perturbation of a nontrivial equilibrium in a stationary environment leads to relatively long-term deviations from equilibrium and a slow return to it. The instability of trivial equilibria increases the spatial heterogeneity of solutions. At the same time, the nontrivial equilibrium computationally demonstrates weak properties of global stability in time. The unsteadiness of the environment is simulated by the unsteadiness of the influx of nutrients. It has been shown that the distribution of nutrients can lead to significant heterogeneity in the distribution of individuals across the spatial habitat.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biology and Bioinformatics
Mathematical Biology and Bioinformatics Mathematics-Applied Mathematics
CiteScore
1.10
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信