{"title":"基于液滴管的三电纳米发电机的设计、制造和应用研究","authors":"Yana Xiao","doi":"10.24874/ti.1493.06.23.08","DOIUrl":null,"url":null,"abstract":"The invention of triboelectric nanogenerators (TENGs) provides an effective approach to the sustainable power of energy. Liquid-solid interface-based TENGs have been researched in virtue of less friction for harvesting energy from raindrops, rivers, and oceans in the form of water flows. However, TENGs based on droplet tubes have been rarely investigated. In this study, we proposed a new droplet tube-based TENG (DT-TENG) with free-standing and reformative grating electrodes. Both straight and curved DT-TENGs have been designed and fabricated including straight and curved TENG at different inclination angles. The electric properties of DT-TENGs have been evaluated and different materials and hydrophobicity treatments for the tubes have been studied. Initial studies on different liquids demonstrated significant electricity output differences to recognize polar and nonpolar solvents. This DT-TENG was also made into a smart fishing float that can recognize different movement speeds brought about by different weights and generate corresponding electric signals to remind the angler. Furthermore, flexible PVC helix TENG demonstrated similar performance under both straight and helix situations. This study provides a foundation and academic insight into the design and fabrication of droplets based TENGs for energy harvesting in smart cities.","PeriodicalId":23320,"journal":{"name":"Tribology in Industry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Fabrication, and Application Study of Droplet Tube Based Triboelectric Nanogenerators\",\"authors\":\"Yana Xiao\",\"doi\":\"10.24874/ti.1493.06.23.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The invention of triboelectric nanogenerators (TENGs) provides an effective approach to the sustainable power of energy. Liquid-solid interface-based TENGs have been researched in virtue of less friction for harvesting energy from raindrops, rivers, and oceans in the form of water flows. However, TENGs based on droplet tubes have been rarely investigated. In this study, we proposed a new droplet tube-based TENG (DT-TENG) with free-standing and reformative grating electrodes. Both straight and curved DT-TENGs have been designed and fabricated including straight and curved TENG at different inclination angles. The electric properties of DT-TENGs have been evaluated and different materials and hydrophobicity treatments for the tubes have been studied. Initial studies on different liquids demonstrated significant electricity output differences to recognize polar and nonpolar solvents. This DT-TENG was also made into a smart fishing float that can recognize different movement speeds brought about by different weights and generate corresponding electric signals to remind the angler. Furthermore, flexible PVC helix TENG demonstrated similar performance under both straight and helix situations. This study provides a foundation and academic insight into the design and fabrication of droplets based TENGs for energy harvesting in smart cities.\",\"PeriodicalId\":23320,\"journal\":{\"name\":\"Tribology in Industry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24874/ti.1493.06.23.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24874/ti.1493.06.23.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
三电纳米发电机(TENGs)的发明为可持续能源提供了一种有效的方法。基于液固界面的 TENG 凭借较小的摩擦力,以水流的形式从雨滴、河流和海洋中获取能量,已得到研究。然而,基于液滴管的 TENG 却鲜有研究。在这项研究中,我们提出了一种基于液滴管的新型 TENG(DT-TENG),它具有独立式和重整式光栅电极。我们设计并制造了直型和弯曲型 DT-TENG ,包括不同倾角的直型和弯曲型 TENG。对 DT-TENG 的电特性进行了评估,并研究了管子的不同材料和疏水性处理方法。对不同液体的初步研究表明,在识别极性和非极性溶剂时,电输出存在显著差异。这种 DT-TENG 还被制成了智能钓鱼浮漂,可以识别不同重量带来的不同运动速度,并产生相应的电信号来提醒钓鱼者。此外,柔性聚氯乙烯螺旋 TENG 在直线和螺旋两种情况下均表现出相似的性能。这项研究为设计和制造基于液滴的智能城市能量收集 TENG 提供了基础和学术见解。
Design, Fabrication, and Application Study of Droplet Tube Based Triboelectric Nanogenerators
The invention of triboelectric nanogenerators (TENGs) provides an effective approach to the sustainable power of energy. Liquid-solid interface-based TENGs have been researched in virtue of less friction for harvesting energy from raindrops, rivers, and oceans in the form of water flows. However, TENGs based on droplet tubes have been rarely investigated. In this study, we proposed a new droplet tube-based TENG (DT-TENG) with free-standing and reformative grating electrodes. Both straight and curved DT-TENGs have been designed and fabricated including straight and curved TENG at different inclination angles. The electric properties of DT-TENGs have been evaluated and different materials and hydrophobicity treatments for the tubes have been studied. Initial studies on different liquids demonstrated significant electricity output differences to recognize polar and nonpolar solvents. This DT-TENG was also made into a smart fishing float that can recognize different movement speeds brought about by different weights and generate corresponding electric signals to remind the angler. Furthermore, flexible PVC helix TENG demonstrated similar performance under both straight and helix situations. This study provides a foundation and academic insight into the design and fabrication of droplets based TENGs for energy harvesting in smart cities.
期刊介绍:
he aim of Tribology in Industry journal is to publish quality experimental and theoretical research papers in fields of the science of friction, wear and lubrication and any closely related fields. The scope includes all aspects of materials science, surface science, applied physics and mechanical engineering which relate directly to the subjects of wear and friction. Topical areas include, but are not limited to: Friction, Wear, Lubricants, Surface characterization, Surface engineering, Nanotribology, Contact mechanics, Coatings, Alloys, Composites, Tribological design, Biotribology, Green Tribology.