极端双均匀超图的签名代数

IF 1.9 3区 数学 Q1 MATHEMATICS, APPLIED
Axioms Pub Date : 2023-12-15 DOI:10.3390/axioms12121123
Evgeniya Egorova, Aleksey Mokryakov, Vladimir Tsurkov
{"title":"极端双均匀超图的签名代数","authors":"Evgeniya Egorova, Aleksey Mokryakov, Vladimir Tsurkov","doi":"10.3390/axioms12121123","DOIUrl":null,"url":null,"abstract":"In the last decade, several characterizations have been constructed for constructions such as extreme hypergraphs. One of the most recently described features is the signature. A signature is a number that uniquely describes an extremal and allows one to efficiently store the extremal two-uniform hypergraph itself. However, for the signature, although various algorithms have been derived for transforming it into other object-characteristics such as the base, the adjacency matrix, and the vector of vertex degrees, no isolated signature union and intersection apparatus has been constructed. This allows us to build efficient algorithms based on signatures, the most compact representation of extremal two-uniform hypergraphs. The nature of the algebraic construction that can be built on a set of signatures using union and intersection operations has also been defined. It is proved that an algebra on a set of signatures with either the union or intersection operation forms a monoid; if the algebra is defined on a set of signatures with both union and intersection operations, it forms a distributive lattice.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"19 11","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Algebra of Signatures for Extreme Two-Uniform Hypergraphs\",\"authors\":\"Evgeniya Egorova, Aleksey Mokryakov, Vladimir Tsurkov\",\"doi\":\"10.3390/axioms12121123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decade, several characterizations have been constructed for constructions such as extreme hypergraphs. One of the most recently described features is the signature. A signature is a number that uniquely describes an extremal and allows one to efficiently store the extremal two-uniform hypergraph itself. However, for the signature, although various algorithms have been derived for transforming it into other object-characteristics such as the base, the adjacency matrix, and the vector of vertex degrees, no isolated signature union and intersection apparatus has been constructed. This allows us to build efficient algorithms based on signatures, the most compact representation of extremal two-uniform hypergraphs. The nature of the algebraic construction that can be built on a set of signatures using union and intersection operations has also been defined. It is proved that an algebra on a set of signatures with either the union or intersection operation forms a monoid; if the algebra is defined on a set of signatures with both union and intersection operations, it forms a distributive lattice.\",\"PeriodicalId\":53148,\"journal\":{\"name\":\"Axioms\",\"volume\":\"19 11\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms12121123\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms12121123","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,人们为极端超图等构造构建了一些特征。最近描述最多的特征之一是签名。签名是一个唯一描述极值的数字,它允许人们有效地存储极值双均匀超图本身。然而,对于签名,虽然已经推导出了将其转换为其他对象特征(如基数、邻接矩阵和顶点度向量)的各种算法,但还没有构建出孤立的签名联合和交集装置。这使我们能够基于签名构建高效算法,而签名是极值双均匀超图最紧凑的表示形式。我们还定义了使用联合和交集运算在一组签名上建立的代数构造的性质。研究证明,使用联合或交集运算在一组签名上建立的代数形成了一个单元;如果该代数定义在同时使用联合和交集运算的一组签名上,则形成了一个分布网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Algebra of Signatures for Extreme Two-Uniform Hypergraphs
In the last decade, several characterizations have been constructed for constructions such as extreme hypergraphs. One of the most recently described features is the signature. A signature is a number that uniquely describes an extremal and allows one to efficiently store the extremal two-uniform hypergraph itself. However, for the signature, although various algorithms have been derived for transforming it into other object-characteristics such as the base, the adjacency matrix, and the vector of vertex degrees, no isolated signature union and intersection apparatus has been constructed. This allows us to build efficient algorithms based on signatures, the most compact representation of extremal two-uniform hypergraphs. The nature of the algebraic construction that can be built on a set of signatures using union and intersection operations has also been defined. It is proved that an algebra on a set of signatures with either the union or intersection operation forms a monoid; if the algebra is defined on a set of signatures with both union and intersection operations, it forms a distributive lattice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Axioms
Axioms Mathematics-Algebra and Number Theory
自引率
10.00%
发文量
604
审稿时长
11 weeks
期刊介绍: Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信