{"title":"关于 1,4-二硝基哌嗪-2-羧酸的结构特征、振动方面、化学位移和电子特性的计算研究:对供体-受体相互作用和热力学性质的见解","authors":"S. S","doi":"10.54392/irjmt2411","DOIUrl":null,"url":null,"abstract":"This study employs computational simulations to comprehensively investigate the molecular properties of 1,4-Dinitrosopiperazine-2-carboxylic acid. Through rigorous analysis, the research explores the compound's structural characteristics, vibrational assignments, chemical shifts, electronic properties, donor-acceptor interactions, Mulliken atomic charges, molecular electrostatic potential surface (MESP), and thermodynamic parameters. The findings provide intricate insights into the behavior of the compound, unveiling potential applications in diverse chemical contexts. This thorough examination contributes significantly to our understanding of the fundamental properties of 1,4-Dinitrosopiperazine-2-carboxylic acid, offering invaluable knowledge for both further research endeavors and practical applications. The detailed elucidation of these properties holds promise for advancements in various fields, from pharmaceuticals to materials science, marking a significant stride towards harnessing the full potential of this compound in contemporary chemistry.","PeriodicalId":14412,"journal":{"name":"International Research Journal of Multidisciplinary Technovation","volume":"102 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational study on the structural features, vibrational aspects, chemical shifts, and electronic properties of 1,4-Dinitrosopiperazine-2-carboxylic acid: Insights into donor-acceptor interactions and thermodynamic properties\",\"authors\":\"S. S\",\"doi\":\"10.54392/irjmt2411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study employs computational simulations to comprehensively investigate the molecular properties of 1,4-Dinitrosopiperazine-2-carboxylic acid. Through rigorous analysis, the research explores the compound's structural characteristics, vibrational assignments, chemical shifts, electronic properties, donor-acceptor interactions, Mulliken atomic charges, molecular electrostatic potential surface (MESP), and thermodynamic parameters. The findings provide intricate insights into the behavior of the compound, unveiling potential applications in diverse chemical contexts. This thorough examination contributes significantly to our understanding of the fundamental properties of 1,4-Dinitrosopiperazine-2-carboxylic acid, offering invaluable knowledge for both further research endeavors and practical applications. The detailed elucidation of these properties holds promise for advancements in various fields, from pharmaceuticals to materials science, marking a significant stride towards harnessing the full potential of this compound in contemporary chemistry.\",\"PeriodicalId\":14412,\"journal\":{\"name\":\"International Research Journal of Multidisciplinary Technovation\",\"volume\":\"102 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal of Multidisciplinary Technovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54392/irjmt2411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal of Multidisciplinary Technovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54392/irjmt2411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational study on the structural features, vibrational aspects, chemical shifts, and electronic properties of 1,4-Dinitrosopiperazine-2-carboxylic acid: Insights into donor-acceptor interactions and thermodynamic properties
This study employs computational simulations to comprehensively investigate the molecular properties of 1,4-Dinitrosopiperazine-2-carboxylic acid. Through rigorous analysis, the research explores the compound's structural characteristics, vibrational assignments, chemical shifts, electronic properties, donor-acceptor interactions, Mulliken atomic charges, molecular electrostatic potential surface (MESP), and thermodynamic parameters. The findings provide intricate insights into the behavior of the compound, unveiling potential applications in diverse chemical contexts. This thorough examination contributes significantly to our understanding of the fundamental properties of 1,4-Dinitrosopiperazine-2-carboxylic acid, offering invaluable knowledge for both further research endeavors and practical applications. The detailed elucidation of these properties holds promise for advancements in various fields, from pharmaceuticals to materials science, marking a significant stride towards harnessing the full potential of this compound in contemporary chemistry.