含哈密顿公式的 AKNS 型还原积分层次结构

IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Wen-Xiu Ma
{"title":"含哈密顿公式的 AKNS 型还原积分层次结构","authors":"Wen-Xiu Ma","doi":"10.59277/romjphys.2023.68.116","DOIUrl":null,"url":null,"abstract":"\"The aim of this paper is to generate a kind of integrable hierarchies of four-component evolution equations with Hamiltonian structures, from a kind of reduced Ablowitz-Kaup-Newell-Segur (AKNS) matrix spectral problems. The zero curvature formulation is the basic tool and the trace identity is the key to establishing Hamiltonian structures. Two examples of Hamiltonian equations in the resulting inte- grable hierarchies are added to the category of coupled integrable nonlinear Schr¨odinger equations and coupled integable modified Korteweg-de Vries equations.\"","PeriodicalId":54449,"journal":{"name":"Romanian Journal of Physics","volume":"141 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AKNS Type Reduced Integrable Hierarchies with Hamiltonian Formulations\",\"authors\":\"Wen-Xiu Ma\",\"doi\":\"10.59277/romjphys.2023.68.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"The aim of this paper is to generate a kind of integrable hierarchies of four-component evolution equations with Hamiltonian structures, from a kind of reduced Ablowitz-Kaup-Newell-Segur (AKNS) matrix spectral problems. The zero curvature formulation is the basic tool and the trace identity is the key to establishing Hamiltonian structures. Two examples of Hamiltonian equations in the resulting inte- grable hierarchies are added to the category of coupled integrable nonlinear Schr¨odinger equations and coupled integable modified Korteweg-de Vries equations.\\\"\",\"PeriodicalId\":54449,\"journal\":{\"name\":\"Romanian Journal of Physics\",\"volume\":\"141 6\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Romanian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.59277/romjphys.2023.68.116\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Romanian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.59277/romjphys.2023.68.116","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

"本文旨在从一种还原的阿布罗维茨-考普-纽维尔-塞古尔(AKNS)矩阵谱问题出发,生成一种具有哈密顿结构的四分量演化方程的可积分层次。零曲率公式是基本工具,而迹同性是建立哈密顿结构的关键。由此产生的可积分层次中的两个哈密顿方程实例被添加到耦合可积分非线性 Schr¨odinger 方程和耦合可积分修正 Korteweg-de Vries 方程类别中"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AKNS Type Reduced Integrable Hierarchies with Hamiltonian Formulations
"The aim of this paper is to generate a kind of integrable hierarchies of four-component evolution equations with Hamiltonian structures, from a kind of reduced Ablowitz-Kaup-Newell-Segur (AKNS) matrix spectral problems. The zero curvature formulation is the basic tool and the trace identity is the key to establishing Hamiltonian structures. Two examples of Hamiltonian equations in the resulting inte- grable hierarchies are added to the category of coupled integrable nonlinear Schr¨odinger equations and coupled integable modified Korteweg-de Vries equations."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Romanian Journal of Physics
Romanian Journal of Physics 物理-物理:综合
CiteScore
2.30
自引率
26.70%
发文量
0
审稿时长
4-8 weeks
期刊介绍: Romanian Journal of Physics was first published in 1992 as a continuation of the former Revue Roumaine de Physique (ISSN: 0035-4090), a journal publishing physics and engineering scientific papers established 1956 with deep roots in the early history of the modern Romanian physics. Romanian Journal of Physics is a journal of the Romanian Academy published by Editura Academiei Romane (eA). The journal has an international character intended for the publication of original physics contributions from various sub-fields including the following: -Theoretical Physics & Applied Mathematics -Nuclear Physics -Solid State Physics & Materials Science -Statistical Physics & Quantum Mechanics -Optics -Spectroscopy -Plasma & Laser Physics -(High Energy) Elementary Particles Physics -Atomic and Molecular Physics -Astrophysics -Atmosphere (Environmental) & Earth Science -Environmental Protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信