番茄积累的镉浓度与植物生长无关

IF 3.1 3区 农林科学 Q1 HORTICULTURE
Xingyu Zhang, Cong Zhang, Yuyang Zhang
{"title":"番茄积累的镉浓度与植物生长无关","authors":"Xingyu Zhang, Cong Zhang, Yuyang Zhang","doi":"10.3390/horticulturae9121343","DOIUrl":null,"url":null,"abstract":"Cadmium (Cd) contamination is a growing concern, as exposure to the metal has been shown to inhibit plant growth and development. However, soil Cd pollution in China is typically mild, and thus its concentration often does not impede plant growth. On the other hand, it is unknown if increased plant growth impacts Cd uptake, movement, and accumulation. Here, we analyzed the relationship between Cd accumulation in 31 tomato cultivars and the impact on specific growth parameters in mild Cd contamination. The results showed that there are variations in the Cd distribution among the 31 tomato cultivars studied. There were higher Cd concentrations in shoots of the cultivar ‘SV3557’, whereas root Cd concentrations were the lowest. The roots of the cultivar ‘HF11’ recorded the lowest Cd content but had higher Cd content in the shoots. The Cd concentration in roots and shoots was not related to root length, plant height, and root weight. However, Cd accumulation in the shoots was markedly promoted by root length and plant height, and Cd accumulation in the roots was promoted by root weight. Subsequently, we imposed Cd on four selected tomato cultivars to ascertain their accumulation in the shoot tissues. The results revealed that, among the four tomato cultivars, Cd was highly accumulated in the leaves, followed by the stems, and the fruits (leaf > stem > fruit). When identifying significant loci associated with Cd accumulation in tomato plants, it is crucial to find a suitable indicator to assess the plant’s ability to accumulate Cd. Thus, Cd concentration in shoots can be used as a reliable proxy for evaluating tomato plants’ capacity for Cd accumulation. This study serves as a valuable reference in guiding the selection of such an index.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":"79 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tomato Accumulates Cadmium to a Concentration Independent of Plant Growth\",\"authors\":\"Xingyu Zhang, Cong Zhang, Yuyang Zhang\",\"doi\":\"10.3390/horticulturae9121343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cadmium (Cd) contamination is a growing concern, as exposure to the metal has been shown to inhibit plant growth and development. However, soil Cd pollution in China is typically mild, and thus its concentration often does not impede plant growth. On the other hand, it is unknown if increased plant growth impacts Cd uptake, movement, and accumulation. Here, we analyzed the relationship between Cd accumulation in 31 tomato cultivars and the impact on specific growth parameters in mild Cd contamination. The results showed that there are variations in the Cd distribution among the 31 tomato cultivars studied. There were higher Cd concentrations in shoots of the cultivar ‘SV3557’, whereas root Cd concentrations were the lowest. The roots of the cultivar ‘HF11’ recorded the lowest Cd content but had higher Cd content in the shoots. The Cd concentration in roots and shoots was not related to root length, plant height, and root weight. However, Cd accumulation in the shoots was markedly promoted by root length and plant height, and Cd accumulation in the roots was promoted by root weight. Subsequently, we imposed Cd on four selected tomato cultivars to ascertain their accumulation in the shoot tissues. The results revealed that, among the four tomato cultivars, Cd was highly accumulated in the leaves, followed by the stems, and the fruits (leaf > stem > fruit). When identifying significant loci associated with Cd accumulation in tomato plants, it is crucial to find a suitable indicator to assess the plant’s ability to accumulate Cd. Thus, Cd concentration in shoots can be used as a reliable proxy for evaluating tomato plants’ capacity for Cd accumulation. This study serves as a valuable reference in guiding the selection of such an index.\",\"PeriodicalId\":13034,\"journal\":{\"name\":\"Horticulturae\",\"volume\":\"79 4\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae9121343\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/horticulturae9121343","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

镉(Cd)污染日益引起人们的关注,因为接触这种金属会抑制植物的生长和发育。然而,中国的土壤镉污染通常比较轻微,因此其浓度通常不会阻碍植物生长。另一方面,植物生长的增加是否会影响镉的吸收、移动和积累,目前还不得而知。在此,我们分析了 31 个番茄栽培品种的镉积累与轻度镉污染对特定生长参数的影响之间的关系。结果表明,在所研究的 31 个番茄栽培品种中,镉的分布存在差异。栽培品种'SV3557'芽中的镉浓度较高,而根中的镉浓度最低。栽培品种'HF11'的根部镉含量最低,但嫩芽中的镉含量较高。根和芽中的镉浓度与根长、株高和根重无关。然而,根长和株高明显促进了芽中镉的积累,根重则促进了根中镉的积累。随后,我们对四个选定的番茄栽培品种施加了镉,以确定其在芽组织中的积累情况。结果显示,在四个番茄栽培品种中,镉在叶片中的积累量较高,其次是茎和果实(叶>茎>果实)。在确定与番茄植株镉积累相关的重要位点时,关键是要找到一个合适的指标来评估植株的镉积累能力。因此,芽中的镉浓度可作为评估番茄植株镉积累能力的可靠替代指标。本研究为选择此类指标提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tomato Accumulates Cadmium to a Concentration Independent of Plant Growth
Cadmium (Cd) contamination is a growing concern, as exposure to the metal has been shown to inhibit plant growth and development. However, soil Cd pollution in China is typically mild, and thus its concentration often does not impede plant growth. On the other hand, it is unknown if increased plant growth impacts Cd uptake, movement, and accumulation. Here, we analyzed the relationship between Cd accumulation in 31 tomato cultivars and the impact on specific growth parameters in mild Cd contamination. The results showed that there are variations in the Cd distribution among the 31 tomato cultivars studied. There were higher Cd concentrations in shoots of the cultivar ‘SV3557’, whereas root Cd concentrations were the lowest. The roots of the cultivar ‘HF11’ recorded the lowest Cd content but had higher Cd content in the shoots. The Cd concentration in roots and shoots was not related to root length, plant height, and root weight. However, Cd accumulation in the shoots was markedly promoted by root length and plant height, and Cd accumulation in the roots was promoted by root weight. Subsequently, we imposed Cd on four selected tomato cultivars to ascertain their accumulation in the shoot tissues. The results revealed that, among the four tomato cultivars, Cd was highly accumulated in the leaves, followed by the stems, and the fruits (leaf > stem > fruit). When identifying significant loci associated with Cd accumulation in tomato plants, it is crucial to find a suitable indicator to assess the plant’s ability to accumulate Cd. Thus, Cd concentration in shoots can be used as a reliable proxy for evaluating tomato plants’ capacity for Cd accumulation. This study serves as a valuable reference in guiding the selection of such an index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Horticulturae
Horticulturae HORTICULTURE-
CiteScore
3.50
自引率
19.40%
发文量
998
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信