扭转和弯曲刚度对拍翼空气动力性能的影响

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE
Ming Qi, Wenguo Zhu, Shu Li
{"title":"扭转和弯曲刚度对拍翼空气动力性能的影响","authors":"Ming Qi, Wenguo Zhu, Shu Li","doi":"10.3390/aerospace10121035","DOIUrl":null,"url":null,"abstract":"For large bird-like flapping wing aircraft, the fluid–structure coupling problem is very important. Through the passive torsional deformation of the wing, sufficient thrust is generated and propulsion efficiency is ensured. Moreover, spanwise bending deformation will affect lift and thrust. The flow field on the surface of the wing and the geometric nonlinearity caused by the large deformation of the wing should be considered during the design process. Existing research methods do not solve this problem accurately and efficiently. This paper provides a method to analyze the fluid–structure coupling problem of the flapping wing which adopts the three-dimensional unsteady panel method to solve the aerodynamic force, and adopts the linear beam element model combined with the corotational formulation method to consider the geometric nonlinear deformation of the wing beam. This article compares the performance of the flapping wing with different torsional and bending stiffness, and analyzes the airfoil surface pressure coefficients at different portions of the wing during the period. The results show that torsional stiffness has a large influence on the lift coefficient, thrust coefficient and propulsion efficiency. Meanwhile, the torsional stiffness of the wing beam and the initial geometric twist angle of the wing need to be well coordinated to achieve high efficiency. Moreover, appropriate bending stiffness of the wing is conducive to improving propulsion efficiency.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"46 8","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Torsional and Bending Stiffness on the Aerodynamic Performance of Flapping Wing\",\"authors\":\"Ming Qi, Wenguo Zhu, Shu Li\",\"doi\":\"10.3390/aerospace10121035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For large bird-like flapping wing aircraft, the fluid–structure coupling problem is very important. Through the passive torsional deformation of the wing, sufficient thrust is generated and propulsion efficiency is ensured. Moreover, spanwise bending deformation will affect lift and thrust. The flow field on the surface of the wing and the geometric nonlinearity caused by the large deformation of the wing should be considered during the design process. Existing research methods do not solve this problem accurately and efficiently. This paper provides a method to analyze the fluid–structure coupling problem of the flapping wing which adopts the three-dimensional unsteady panel method to solve the aerodynamic force, and adopts the linear beam element model combined with the corotational formulation method to consider the geometric nonlinear deformation of the wing beam. This article compares the performance of the flapping wing with different torsional and bending stiffness, and analyzes the airfoil surface pressure coefficients at different portions of the wing during the period. The results show that torsional stiffness has a large influence on the lift coefficient, thrust coefficient and propulsion efficiency. Meanwhile, the torsional stiffness of the wing beam and the initial geometric twist angle of the wing need to be well coordinated to achieve high efficiency. Moreover, appropriate bending stiffness of the wing is conducive to improving propulsion efficiency.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":\"46 8\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace10121035\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10121035","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

对于大型鸟类拍翼飞行器来说,流体与结构的耦合问题非常重要。通过机翼的被动扭转变形,可以产生足够的推力,确保推进效率。此外,翼展弯曲变形也会影响升力和推力。在设计过程中,应考虑机翼表面的流场和机翼大变形引起的几何非线性。现有的研究方法无法准确有效地解决这一问题。本文提供了一种分析拍翼流固耦合问题的方法,该方法采用三维非稳态面板法求解气动力,并采用线性梁元模型结合振型计算方法考虑翼梁的几何非线性变形。本文比较了不同扭转刚度和弯曲刚度的拍击翼的性能,并分析了期间翼面不同部位的翼面压力系数。结果表明,扭转刚度对升力系数、推力系数和推进效率有较大影响。同时,翼梁的扭转刚度和机翼的初始几何扭转角需要很好地协调,以实现高效率。此外,适当的机翼弯曲刚度也有利于提高推进效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Torsional and Bending Stiffness on the Aerodynamic Performance of Flapping Wing
For large bird-like flapping wing aircraft, the fluid–structure coupling problem is very important. Through the passive torsional deformation of the wing, sufficient thrust is generated and propulsion efficiency is ensured. Moreover, spanwise bending deformation will affect lift and thrust. The flow field on the surface of the wing and the geometric nonlinearity caused by the large deformation of the wing should be considered during the design process. Existing research methods do not solve this problem accurately and efficiently. This paper provides a method to analyze the fluid–structure coupling problem of the flapping wing which adopts the three-dimensional unsteady panel method to solve the aerodynamic force, and adopts the linear beam element model combined with the corotational formulation method to consider the geometric nonlinear deformation of the wing beam. This article compares the performance of the flapping wing with different torsional and bending stiffness, and analyzes the airfoil surface pressure coefficients at different portions of the wing during the period. The results show that torsional stiffness has a large influence on the lift coefficient, thrust coefficient and propulsion efficiency. Meanwhile, the torsional stiffness of the wing beam and the initial geometric twist angle of the wing need to be well coordinated to achieve high efficiency. Moreover, appropriate bending stiffness of the wing is conducive to improving propulsion efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace
Aerospace ENGINEERING, AEROSPACE-
CiteScore
3.40
自引率
23.10%
发文量
661
审稿时长
6 weeks
期刊介绍: Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信