{"title":"带纯延迟的脉冲分微分方程的有限时间稳定性","authors":"Tingting Xie, Mengmeng Li","doi":"10.3390/axioms12121129","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel concept of the impulsive delayed Mittag–Leffler-type vector function, an extension of the Mittag–Leffler matrix function. It is essential to seek explicit formulas for the solutions to linear impulsive fractional differential delay equations. Based on explicit formulas of the solutions, the finite-time stability results of impulsive fractional differential delay equations are presented. Finally, we present four examples to illustrate the validity of our theoretical results.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"210 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-Time Stability of Impulsive Fractional Differential Equations with Pure Delays\",\"authors\":\"Tingting Xie, Mengmeng Li\",\"doi\":\"10.3390/axioms12121129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel concept of the impulsive delayed Mittag–Leffler-type vector function, an extension of the Mittag–Leffler matrix function. It is essential to seek explicit formulas for the solutions to linear impulsive fractional differential delay equations. Based on explicit formulas of the solutions, the finite-time stability results of impulsive fractional differential delay equations are presented. Finally, we present four examples to illustrate the validity of our theoretical results.\",\"PeriodicalId\":53148,\"journal\":{\"name\":\"Axioms\",\"volume\":\"210 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms12121129\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms12121129","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Finite-Time Stability of Impulsive Fractional Differential Equations with Pure Delays
This paper introduces a novel concept of the impulsive delayed Mittag–Leffler-type vector function, an extension of the Mittag–Leffler matrix function. It is essential to seek explicit formulas for the solutions to linear impulsive fractional differential delay equations. Based on explicit formulas of the solutions, the finite-time stability results of impulsive fractional differential delay equations are presented. Finally, we present four examples to illustrate the validity of our theoretical results.
期刊介绍:
Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.