线性阿贝尔模态逻辑

Q2 Arts and Humanities
Hamzeh Mohammadi
{"title":"线性阿贝尔模态逻辑","authors":"Hamzeh Mohammadi","doi":"10.18778/0138-0680.2023.30","DOIUrl":null,"url":null,"abstract":"A many-valued modal logic, called linear abelian modal logic \\(\\rm {\\mathbf{LK(A)}}\\) is introduced as an extension of the abelian modal logic \\(\\rm \\mathbf{K(A)}\\). Abelian modal logic \\(\\rm \\mathbf{K(A)}\\) is the minimal modal extension of the logic of lattice-ordered abelian groups. The logic \\(\\rm \\mathbf{LK(A)}\\) is axiomatized by extending \\(\\rm \\mathbf{K(A)}\\) with the modal axiom schemas \\(\\Box(\\varphi\\vee\\psi)\\rightarrow(\\Box\\varphi\\vee\\Box\\psi)\\) and \\((\\Box\\varphi\\wedge\\Box\\psi)\\rightarrow\\Box(\\varphi\\wedge\\psi)\\). Completeness theorem with respect to algebraic semantics and a hypersequent calculus admitting cut-elimination are established. Finally, the correspondence between hypersequent calculi and axiomatization is investigated.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear Abelian Modal Logic\",\"authors\":\"Hamzeh Mohammadi\",\"doi\":\"10.18778/0138-0680.2023.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A many-valued modal logic, called linear abelian modal logic \\\\(\\\\rm {\\\\mathbf{LK(A)}}\\\\) is introduced as an extension of the abelian modal logic \\\\(\\\\rm \\\\mathbf{K(A)}\\\\). Abelian modal logic \\\\(\\\\rm \\\\mathbf{K(A)}\\\\) is the minimal modal extension of the logic of lattice-ordered abelian groups. The logic \\\\(\\\\rm \\\\mathbf{LK(A)}\\\\) is axiomatized by extending \\\\(\\\\rm \\\\mathbf{K(A)}\\\\) with the modal axiom schemas \\\\(\\\\Box(\\\\varphi\\\\vee\\\\psi)\\\\rightarrow(\\\\Box\\\\varphi\\\\vee\\\\Box\\\\psi)\\\\) and \\\\((\\\\Box\\\\varphi\\\\wedge\\\\Box\\\\psi)\\\\rightarrow\\\\Box(\\\\varphi\\\\wedge\\\\psi)\\\\). Completeness theorem with respect to algebraic semantics and a hypersequent calculus admitting cut-elimination are established. Finally, the correspondence between hypersequent calculi and axiomatization is investigated.\",\"PeriodicalId\":38667,\"journal\":{\"name\":\"Bulletin of the Section of Logic\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Section of Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18778/0138-0680.2023.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.2023.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

引入了一种多值模态逻辑,称为线性阿贝尔模态逻辑(linear abelian modal logic),作为阿贝尔模态逻辑(abelian modal logic)的扩展。无边模态逻辑(abelian modal logic)是格序无边群逻辑的最小模态扩展。逻辑 \(\rm \mathbf{LK(A)}\通过扩展 \(\rm \mathbf{K(A)}\的模态公理模式而被公理化了\(\Box(varphi\vee\psi)\rightarrow(\Box\varphi\vee\Box\psi)\) and\((\Box\varphi\wedge\Box\psi)\rightarrow\Box(\varphi\wedge\psi)\).建立了代数语义的完备性定理和允许剪切消除的超sequent 微积分。最后,研究了超sequent 计算和公理化之间的对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Abelian Modal Logic
A many-valued modal logic, called linear abelian modal logic \(\rm {\mathbf{LK(A)}}\) is introduced as an extension of the abelian modal logic \(\rm \mathbf{K(A)}\). Abelian modal logic \(\rm \mathbf{K(A)}\) is the minimal modal extension of the logic of lattice-ordered abelian groups. The logic \(\rm \mathbf{LK(A)}\) is axiomatized by extending \(\rm \mathbf{K(A)}\) with the modal axiom schemas \(\Box(\varphi\vee\psi)\rightarrow(\Box\varphi\vee\Box\psi)\) and \((\Box\varphi\wedge\Box\psi)\rightarrow\Box(\varphi\wedge\psi)\). Completeness theorem with respect to algebraic semantics and a hypersequent calculus admitting cut-elimination are established. Finally, the correspondence between hypersequent calculi and axiomatization is investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of the Section of Logic
Bulletin of the Section of Logic Arts and Humanities-Philosophy
CiteScore
0.90
自引率
0.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信