几何交点图的最大双方子图

Satyabrata Jana, Anil Maheshwari, Saeed Mehrabi, Sasanka Roy
{"title":"几何交点图的最大双方子图","authors":"Satyabrata Jana, Anil Maheshwari, Saeed Mehrabi, Sasanka Roy","doi":"10.1142/s021819592350005x","DOIUrl":null,"url":null,"abstract":"We study the Maximum Bipartite Subgraph ([Formula: see text]) problem, which is defined as follows. Given a set [Formula: see text] of [Formula: see text] geometric objects in the plane, we want to compute a maximum-size subset [Formula: see text] such that the intersection graph of the objects in [Formula: see text] is bipartite. We first give an [Formula: see text]-time algorithm that computes an almost optimal solution for the problem on circular-arc graphs. We show that the [Formula: see text] problem is [Formula: see text]-hard on geometric graphs for which the maximum independent set is [Formula: see text]-hard (hence, it is [Formula: see text]-hard even on unit squares and unit disks). On the other hand, we give a [Formula: see text] for the problem on unit squares and unit disks. Moreover, we show fast approximation algorithms with small-constant factors for the problem on unit squares, unit disks, and unit-height axis parallel rectangles. Additionally, we prove that the Maximum Triangle-free Subgraph ([Formula: see text]) problem is NP-hard for axis-parallel rectangles. Here the objective is the same as that of the [Formula: see text] except the intersection graph induced by the set [Formula: see text] needs to be triangle-free only (instead of being bipartite).","PeriodicalId":269811,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"53 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Bipartite Subgraphs of Geometric Intersection Graphs\",\"authors\":\"Satyabrata Jana, Anil Maheshwari, Saeed Mehrabi, Sasanka Roy\",\"doi\":\"10.1142/s021819592350005x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Maximum Bipartite Subgraph ([Formula: see text]) problem, which is defined as follows. Given a set [Formula: see text] of [Formula: see text] geometric objects in the plane, we want to compute a maximum-size subset [Formula: see text] such that the intersection graph of the objects in [Formula: see text] is bipartite. We first give an [Formula: see text]-time algorithm that computes an almost optimal solution for the problem on circular-arc graphs. We show that the [Formula: see text] problem is [Formula: see text]-hard on geometric graphs for which the maximum independent set is [Formula: see text]-hard (hence, it is [Formula: see text]-hard even on unit squares and unit disks). On the other hand, we give a [Formula: see text] for the problem on unit squares and unit disks. Moreover, we show fast approximation algorithms with small-constant factors for the problem on unit squares, unit disks, and unit-height axis parallel rectangles. Additionally, we prove that the Maximum Triangle-free Subgraph ([Formula: see text]) problem is NP-hard for axis-parallel rectangles. Here the objective is the same as that of the [Formula: see text] except the intersection graph induced by the set [Formula: see text] needs to be triangle-free only (instead of being bipartite).\",\"PeriodicalId\":269811,\"journal\":{\"name\":\"International Journal of Computational Geometry & Applications\",\"volume\":\"53 24\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s021819592350005x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021819592350005x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是最大双方子图([公式:见正文])问题,其定义如下。给定一组[公式:见正文]平面内的[公式:见正文]几何物体,我们想计算一个最大尺寸的子集[公式:见正文],使得[公式:见正文]中物体的交集图是双分部的。我们首先给出了一种[公式:见正文]时间算法,它能在圆弧图上计算出该问题的几乎最优解。我们证明,在最大独立集是[公式:见正文]的几何图形上,[公式:见正文]问题是[公式:见正文]困难的(因此,即使在单位正方形和单位圆盘上,它也是[公式:见正文]困难的)。另一方面,我们给出了单位正方形和单位磁盘上问题的[公式:见正文]。此外,我们还展示了单位正方形、单位磁盘和单位高度轴平行矩形上问题的小常数快速近似算法。此外,我们还证明了最大无三角形子图([公式:见正文])问题对于轴平行矩形来说是 NP 难的。这里的目标与[公式:见正文]的目标相同,只是由集合[公式:见正文]诱导的交集图只需要是无三角形的(而不是双方形的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum Bipartite Subgraphs of Geometric Intersection Graphs
We study the Maximum Bipartite Subgraph ([Formula: see text]) problem, which is defined as follows. Given a set [Formula: see text] of [Formula: see text] geometric objects in the plane, we want to compute a maximum-size subset [Formula: see text] such that the intersection graph of the objects in [Formula: see text] is bipartite. We first give an [Formula: see text]-time algorithm that computes an almost optimal solution for the problem on circular-arc graphs. We show that the [Formula: see text] problem is [Formula: see text]-hard on geometric graphs for which the maximum independent set is [Formula: see text]-hard (hence, it is [Formula: see text]-hard even on unit squares and unit disks). On the other hand, we give a [Formula: see text] for the problem on unit squares and unit disks. Moreover, we show fast approximation algorithms with small-constant factors for the problem on unit squares, unit disks, and unit-height axis parallel rectangles. Additionally, we prove that the Maximum Triangle-free Subgraph ([Formula: see text]) problem is NP-hard for axis-parallel rectangles. Here the objective is the same as that of the [Formula: see text] except the intersection graph induced by the set [Formula: see text] needs to be triangle-free only (instead of being bipartite).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信