Francisca Orellana, Marcelo Rivera, Matías Benítez, Karyn Belmonte, L. Vinnett
{"title":"在浮选速率表征中选择最粗粒度等级","authors":"Francisca Orellana, Marcelo Rivera, Matías Benítez, Karyn Belmonte, L. Vinnett","doi":"10.37190/ppmp/176950","DOIUrl":null,"url":null,"abstract":"This paper studies size-by-size batch flotation kinetics for the separation of Cu at particle sizes +75 μm, investigating the responses in the -150/+75 μm, -212/+150 μm, -300/+212 μm, -355/+300 μm and +355 μm size fractions. The kinetic results were analyzed to identify classes limited by the maximum achievable recovery or low flotation rates. Combinations of these classes were investigated, emulating the selection of the coarsest size in a kinetic study. The impact of compositing size classes was discussed, emphasizing implications in the identification of difficult-to-float components. The -212/+75 μm classes reached steady recoveries at long flotation times, whereas the -355/+212 μm classes presented sustained increasing recoveries at extended flotation times. Flotation rate distributions in the -212/+75 μm classes exhibited mound-shaped distributions, indicating low fractions of rate constants close to zero (R∞-limited case). Conversely, the -355/+212 μm classes presented reverse J-shaped distributions, with a high fraction of valuable minerals with flotation rates close to zero (rate-limited case). Combining several size classes in the definition of the coarsest size fraction in kinetic characterizations proved to hide the flotation patterns of the less massive constituents (+212 μm classes). The +75 μm and +150 μm cumulative retained classes trended towards steady recoveries, consistently leading to mounded flotation rate distributions. This study highlighted the need for reliable methodologies to select size fractions in kinetic characterizations, as their arbitrary definitions may lead to a misinterpretation of the mineral losses when compositing classes with different flotation responses.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"54 28","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the selection of the coarsest size class in flotation rate characterizations\",\"authors\":\"Francisca Orellana, Marcelo Rivera, Matías Benítez, Karyn Belmonte, L. Vinnett\",\"doi\":\"10.37190/ppmp/176950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies size-by-size batch flotation kinetics for the separation of Cu at particle sizes +75 μm, investigating the responses in the -150/+75 μm, -212/+150 μm, -300/+212 μm, -355/+300 μm and +355 μm size fractions. The kinetic results were analyzed to identify classes limited by the maximum achievable recovery or low flotation rates. Combinations of these classes were investigated, emulating the selection of the coarsest size in a kinetic study. The impact of compositing size classes was discussed, emphasizing implications in the identification of difficult-to-float components. The -212/+75 μm classes reached steady recoveries at long flotation times, whereas the -355/+212 μm classes presented sustained increasing recoveries at extended flotation times. Flotation rate distributions in the -212/+75 μm classes exhibited mound-shaped distributions, indicating low fractions of rate constants close to zero (R∞-limited case). Conversely, the -355/+212 μm classes presented reverse J-shaped distributions, with a high fraction of valuable minerals with flotation rates close to zero (rate-limited case). Combining several size classes in the definition of the coarsest size fraction in kinetic characterizations proved to hide the flotation patterns of the less massive constituents (+212 μm classes). The +75 μm and +150 μm cumulative retained classes trended towards steady recoveries, consistently leading to mounded flotation rate distributions. This study highlighted the need for reliable methodologies to select size fractions in kinetic characterizations, as their arbitrary definitions may lead to a misinterpretation of the mineral losses when compositing classes with different flotation responses.\",\"PeriodicalId\":49137,\"journal\":{\"name\":\"Physicochemical Problems of Mineral Processing\",\"volume\":\"54 28\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physicochemical Problems of Mineral Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.37190/ppmp/176950\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/176950","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
On the selection of the coarsest size class in flotation rate characterizations
This paper studies size-by-size batch flotation kinetics for the separation of Cu at particle sizes +75 μm, investigating the responses in the -150/+75 μm, -212/+150 μm, -300/+212 μm, -355/+300 μm and +355 μm size fractions. The kinetic results were analyzed to identify classes limited by the maximum achievable recovery or low flotation rates. Combinations of these classes were investigated, emulating the selection of the coarsest size in a kinetic study. The impact of compositing size classes was discussed, emphasizing implications in the identification of difficult-to-float components. The -212/+75 μm classes reached steady recoveries at long flotation times, whereas the -355/+212 μm classes presented sustained increasing recoveries at extended flotation times. Flotation rate distributions in the -212/+75 μm classes exhibited mound-shaped distributions, indicating low fractions of rate constants close to zero (R∞-limited case). Conversely, the -355/+212 μm classes presented reverse J-shaped distributions, with a high fraction of valuable minerals with flotation rates close to zero (rate-limited case). Combining several size classes in the definition of the coarsest size fraction in kinetic characterizations proved to hide the flotation patterns of the less massive constituents (+212 μm classes). The +75 μm and +150 μm cumulative retained classes trended towards steady recoveries, consistently leading to mounded flotation rate distributions. This study highlighted the need for reliable methodologies to select size fractions in kinetic characterizations, as their arbitrary definitions may lead to a misinterpretation of the mineral losses when compositing classes with different flotation responses.
期刊介绍:
Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy.
Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal.
Topics of interest
Analytical techniques and applied mineralogy
Computer applications
Comminution, classification and sorting
Froth flotation
Solid-liquid separation
Gravity concentration
Magnetic and electric separation
Hydro and biohydrometallurgy
Extractive metallurgy
Recycling and mineral wastes
Environmental aspects of mineral processing
and other mineral processing related subjects.