Ma Xi, Weigang Zhao, Xiangang Song, Duan Bo, Qinggui Tan
{"title":"基于光学频率梳的高频宽带雷达信号生成技术","authors":"Ma Xi, Weigang Zhao, Xiangang Song, Duan Bo, Qinggui Tan","doi":"10.1117/12.3005263","DOIUrl":null,"url":null,"abstract":"The rapid development of radar technology requires RF transmitters with high working frequency, broad tuning bandwidth, flexible reconfigurability, and the ability of generating large time-bandwidth product signals. In this paper, we reviewed the main architecture and research status of high-frequency, broadband, multi-format radar waveform generation technology based on optical frequency combs (OFCs) in the context of microwave photonics, and we highlighted the technical route and the main problems that exist for the purpose of practical engineering applications. The main challenges and development trends of microwave photonic radar RF front-end based on optical frequency comb in future applications are also presented.","PeriodicalId":298662,"journal":{"name":"Applied Optics and Photonics China","volume":"14 5","pages":"129660C - 129660C-10"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-frequency broadband radar signal generation based on optical frequency comb\",\"authors\":\"Ma Xi, Weigang Zhao, Xiangang Song, Duan Bo, Qinggui Tan\",\"doi\":\"10.1117/12.3005263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of radar technology requires RF transmitters with high working frequency, broad tuning bandwidth, flexible reconfigurability, and the ability of generating large time-bandwidth product signals. In this paper, we reviewed the main architecture and research status of high-frequency, broadband, multi-format radar waveform generation technology based on optical frequency combs (OFCs) in the context of microwave photonics, and we highlighted the technical route and the main problems that exist for the purpose of practical engineering applications. The main challenges and development trends of microwave photonic radar RF front-end based on optical frequency comb in future applications are also presented.\",\"PeriodicalId\":298662,\"journal\":{\"name\":\"Applied Optics and Photonics China\",\"volume\":\"14 5\",\"pages\":\"129660C - 129660C-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Optics and Photonics China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3005263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3005263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-frequency broadband radar signal generation based on optical frequency comb
The rapid development of radar technology requires RF transmitters with high working frequency, broad tuning bandwidth, flexible reconfigurability, and the ability of generating large time-bandwidth product signals. In this paper, we reviewed the main architecture and research status of high-frequency, broadband, multi-format radar waveform generation technology based on optical frequency combs (OFCs) in the context of microwave photonics, and we highlighted the technical route and the main problems that exist for the purpose of practical engineering applications. The main challenges and development trends of microwave photonic radar RF front-end based on optical frequency comb in future applications are also presented.