多尺度混合-混合-混合方法的发展

Franklin C. Barros, A. L. Madureira, Frédéric G. C. Valentin
{"title":"多尺度混合-混合-混合方法的发展","authors":"Franklin C. Barros, A. L. Madureira, Frédéric G. C. Valentin","doi":"10.5540/03.2023.010.01.0105","DOIUrl":null,"url":null,"abstract":". This work develops the Multiscale Hybrid-Hybrid Mixed method - MH 2 M. This is a finite element method that efficiently solves elliptic partial differential equations with multiscale heterogeneous coefficients. The starting point is the Three-field domain decomposition formulation, which searches a function, defined within each subdomain, and two Lagrange multipliers: the flow and trace of the function posed on interfaces. This setting allows different discretizations in each subdomain, as well as the use of different numerical methods to solve local problems. After the decomposition of functional spaces and two static condensations, the MH 2 M method arises by solving independent local Neumann problems in parallel. It results that the method solves an elliptic global problem posed at interfaces instead of the more complicated three-field formulation. In addition to the lower computational cost, the use of iterative methods such as the conjugate gradient is possible. A proper compatibility condition enables a discretization using non-matching grids, preserving stability. Finally, we establish error estimates for a pair of compatible finite element spaces.","PeriodicalId":274912,"journal":{"name":"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics","volume":" 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Development of the Multiscale Hybrid-Hybrid-Mixed method\",\"authors\":\"Franklin C. Barros, A. L. Madureira, Frédéric G. C. Valentin\",\"doi\":\"10.5540/03.2023.010.01.0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This work develops the Multiscale Hybrid-Hybrid Mixed method - MH 2 M. This is a finite element method that efficiently solves elliptic partial differential equations with multiscale heterogeneous coefficients. The starting point is the Three-field domain decomposition formulation, which searches a function, defined within each subdomain, and two Lagrange multipliers: the flow and trace of the function posed on interfaces. This setting allows different discretizations in each subdomain, as well as the use of different numerical methods to solve local problems. After the decomposition of functional spaces and two static condensations, the MH 2 M method arises by solving independent local Neumann problems in parallel. It results that the method solves an elliptic global problem posed at interfaces instead of the more complicated three-field formulation. In addition to the lower computational cost, the use of iterative methods such as the conjugate gradient is possible. A proper compatibility condition enables a discretization using non-matching grids, preserving stability. Finally, we establish error estimates for a pair of compatible finite element spaces.\",\"PeriodicalId\":274912,\"journal\":{\"name\":\"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics\",\"volume\":\" 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5540/03.2023.010.01.0105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5540/03.2023.010.01.0105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

.这项研究开发了多尺度混合-混合混合方法 - MH 2 M。这是一种有限元方法,可有效求解具有多尺度异质系数的椭圆偏微分方程。该方法的出发点是三域分解公式,即在每个子域内定义一个函数,并搜索两个拉格朗日乘数:函数在界面上的流动和迹线。这种设置允许在每个子域中进行不同的离散化,以及使用不同的数值方法来解决局部问题。在对函数空间和两个静态凝聚进行分解后,通过并行求解独立的局部诺伊曼问题,产生了 MH 2 M 方法。其结果是,该方法解决的是界面上的椭圆全局问题,而不是更复杂的三场公式。除了降低计算成本外,还可以使用共轭梯度等迭代方法。通过适当的兼容性条件,可以使用非匹配网格进行离散化,从而保持稳定性。最后,我们建立了一对兼容有限元空间的误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Development of the Multiscale Hybrid-Hybrid-Mixed method
. This work develops the Multiscale Hybrid-Hybrid Mixed method - MH 2 M. This is a finite element method that efficiently solves elliptic partial differential equations with multiscale heterogeneous coefficients. The starting point is the Three-field domain decomposition formulation, which searches a function, defined within each subdomain, and two Lagrange multipliers: the flow and trace of the function posed on interfaces. This setting allows different discretizations in each subdomain, as well as the use of different numerical methods to solve local problems. After the decomposition of functional spaces and two static condensations, the MH 2 M method arises by solving independent local Neumann problems in parallel. It results that the method solves an elliptic global problem posed at interfaces instead of the more complicated three-field formulation. In addition to the lower computational cost, the use of iterative methods such as the conjugate gradient is possible. A proper compatibility condition enables a discretization using non-matching grids, preserving stability. Finally, we establish error estimates for a pair of compatible finite element spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信