{"title":"美国东北部四种拖网渔业的混获模式分析","authors":"Ralf Riedel, Robert leaf","doi":"10.2960/j.v54.m741","DOIUrl":null,"url":null,"abstract":"Discards from commercial fisheries have been linked to detrimental effects on ecosystems and stocks of living marine resources. Understanding spatial and temporal patterns of discards may assist in devising regulatory practices and mitigation strategies and promote sustainable management policies. This study investigates data from bycatch monitoring programs using a machine learning approach. We used a gradient boosting classifier for describing catch and bycatch patterns in the U.S. Mid-Atlantic Black Seabass (Centropristis striata), Summer Flounder (Paralichthys dentatus), Scup (Stenotomus chrysops), and Longfin Squid (Doryteuthis pealeii) fisheries. We used oceanographic, biological, spatial, and fisheries data as explanatory model features. We found positive associations between target species volume and bycatch. Although we found that sea surface temperature and year were important model features, the direction of impact of those predictors was variable. From our findings, we conclude that machine learning approaches are promising in supplementing traditional methodologies, especially with the increase in data availability trends.","PeriodicalId":16669,"journal":{"name":"Journal of Northwest Atlantic Fishery Science","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of bycatch patterns in four northeastern USA trawl fisheries\",\"authors\":\"Ralf Riedel, Robert leaf\",\"doi\":\"10.2960/j.v54.m741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discards from commercial fisheries have been linked to detrimental effects on ecosystems and stocks of living marine resources. Understanding spatial and temporal patterns of discards may assist in devising regulatory practices and mitigation strategies and promote sustainable management policies. This study investigates data from bycatch monitoring programs using a machine learning approach. We used a gradient boosting classifier for describing catch and bycatch patterns in the U.S. Mid-Atlantic Black Seabass (Centropristis striata), Summer Flounder (Paralichthys dentatus), Scup (Stenotomus chrysops), and Longfin Squid (Doryteuthis pealeii) fisheries. We used oceanographic, biological, spatial, and fisheries data as explanatory model features. We found positive associations between target species volume and bycatch. Although we found that sea surface temperature and year were important model features, the direction of impact of those predictors was variable. From our findings, we conclude that machine learning approaches are promising in supplementing traditional methodologies, especially with the increase in data availability trends.\",\"PeriodicalId\":16669,\"journal\":{\"name\":\"Journal of Northwest Atlantic Fishery Science\",\"volume\":\" 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Northwest Atlantic Fishery Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2960/j.v54.m741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Northwest Atlantic Fishery Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2960/j.v54.m741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Analysis of bycatch patterns in four northeastern USA trawl fisheries
Discards from commercial fisheries have been linked to detrimental effects on ecosystems and stocks of living marine resources. Understanding spatial and temporal patterns of discards may assist in devising regulatory practices and mitigation strategies and promote sustainable management policies. This study investigates data from bycatch monitoring programs using a machine learning approach. We used a gradient boosting classifier for describing catch and bycatch patterns in the U.S. Mid-Atlantic Black Seabass (Centropristis striata), Summer Flounder (Paralichthys dentatus), Scup (Stenotomus chrysops), and Longfin Squid (Doryteuthis pealeii) fisheries. We used oceanographic, biological, spatial, and fisheries data as explanatory model features. We found positive associations between target species volume and bycatch. Although we found that sea surface temperature and year were important model features, the direction of impact of those predictors was variable. From our findings, we conclude that machine learning approaches are promising in supplementing traditional methodologies, especially with the increase in data availability trends.
期刊介绍:
The journal focuses on environmental, biological, economic and social science aspects of living marine resources and ecosystems of the northwest Atlantic Ocean. It also welcomes inter-disciplinary fishery-related papers and contributions of general applicability.