用于巴西泛塔纳尔盆地河流流量预测的长短期记忆(LSTM)网络

IF 0.2 Q4 MULTIDISCIPLINARY SCIENCES
Holos Pub Date : 2023-12-18 DOI:10.15628/holos.2023.16315
Cassiano Sampaio Descovi, Antonio Carlos Zuffo, SeyedMehdi Mohammadizadeh, Luis Fernando Murillo Bermúdez, Daniel Alfonso Sierra
{"title":"用于巴西泛塔纳尔盆地河流流量预测的长短期记忆(LSTM)网络","authors":"Cassiano Sampaio Descovi, Antonio Carlos Zuffo, SeyedMehdi Mohammadizadeh, Luis Fernando Murillo Bermúdez, Daniel Alfonso Sierra","doi":"10.15628/holos.2023.16315","DOIUrl":null,"url":null,"abstract":"This article demonstrates the successful application of Long Short-Term Memory (LSTM) recurrent neural networks to simulate streamflow in the Aquidauana River basin, located in the Brazilian Pantanal. The LSTM network used daily precipitation data as input to predict future streamflow in the region. The results obtained from this research show a coefficient of determination (R2) of 0.82, indicating a strong fit of the model to the observed data. Additionally, the Root Mean Squared Error (RMSE) was found to be 0.53, indicating the model's accuracy in predicting streamflow compared to actual data. These findings highlight the effectiveness of LSTM networks in hydrological modeling for the Pantanal region, which is crucial for water resource planning and sustainable management in this ecologically significant area. This study is expected to serve as a catalyst for further research and make a substantial contribution to the advancement of streamflow prediction techniques in complex watersheds such as the Aquidauana River basin.","PeriodicalId":13167,"journal":{"name":"Holos","volume":" 16","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"REDES DE MEMÓRIA DE LONGO E CURTO PRAZO (LSTM) PARA PREDIÇÃO DE FLUXO DE RIO NA BACIA DO PANTANAL BRASILEIRO\",\"authors\":\"Cassiano Sampaio Descovi, Antonio Carlos Zuffo, SeyedMehdi Mohammadizadeh, Luis Fernando Murillo Bermúdez, Daniel Alfonso Sierra\",\"doi\":\"10.15628/holos.2023.16315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article demonstrates the successful application of Long Short-Term Memory (LSTM) recurrent neural networks to simulate streamflow in the Aquidauana River basin, located in the Brazilian Pantanal. The LSTM network used daily precipitation data as input to predict future streamflow in the region. The results obtained from this research show a coefficient of determination (R2) of 0.82, indicating a strong fit of the model to the observed data. Additionally, the Root Mean Squared Error (RMSE) was found to be 0.53, indicating the model's accuracy in predicting streamflow compared to actual data. These findings highlight the effectiveness of LSTM networks in hydrological modeling for the Pantanal region, which is crucial for water resource planning and sustainable management in this ecologically significant area. This study is expected to serve as a catalyst for further research and make a substantial contribution to the advancement of streamflow prediction techniques in complex watersheds such as the Aquidauana River basin.\",\"PeriodicalId\":13167,\"journal\":{\"name\":\"Holos\",\"volume\":\" 16\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Holos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15628/holos.2023.16315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15628/holos.2023.16315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

本文展示了长短期记忆(LSTM)递归神经网络在模拟巴西潘塔纳尔地区阿奎达瓦纳河流域流量中的成功应用。LSTM 网络使用每日降水量数据作为输入,预测该地区未来的溪流流量。研究结果显示,确定系数 (R2) 为 0.82,表明模型与观测数据的拟合度很高。此外,研究还发现均方根误差(RMSE)为 0.53,表明该模型与实际数据相比,在预测溪流方面非常准确。这些发现凸显了 LSTM 网络在潘塔纳尔地区水文建模中的有效性,这对这一具有重要生态意义地区的水资源规划和可持续管理至关重要。这项研究有望成为进一步研究的催化剂,为阿奎达瓦纳河流域等复杂流域的流量预测技术的发展做出重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
REDES DE MEMÓRIA DE LONGO E CURTO PRAZO (LSTM) PARA PREDIÇÃO DE FLUXO DE RIO NA BACIA DO PANTANAL BRASILEIRO
This article demonstrates the successful application of Long Short-Term Memory (LSTM) recurrent neural networks to simulate streamflow in the Aquidauana River basin, located in the Brazilian Pantanal. The LSTM network used daily precipitation data as input to predict future streamflow in the region. The results obtained from this research show a coefficient of determination (R2) of 0.82, indicating a strong fit of the model to the observed data. Additionally, the Root Mean Squared Error (RMSE) was found to be 0.53, indicating the model's accuracy in predicting streamflow compared to actual data. These findings highlight the effectiveness of LSTM networks in hydrological modeling for the Pantanal region, which is crucial for water resource planning and sustainable management in this ecologically significant area. This study is expected to serve as a catalyst for further research and make a substantial contribution to the advancement of streamflow prediction techniques in complex watersheds such as the Aquidauana River basin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Holos
Holos MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
5
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信