{"title":"虚拟生物圈中人工生物进化条件下的新生模型的科学基础、部分成果和展望","authors":"Mykhailo Zachepylo, Oleksandr Yushchenko","doi":"10.20998/2079-0023.2023.02.13","DOIUrl":null,"url":null,"abstract":"This research aimed to gain a profound understanding of virtual biocenoses intricate digital ecosystems, with the goal of elucidating and replicating the emergence and evolution of intelligence in artificial creatures – referred to as noogenesis. A comprehensive analysis of existing studies within virtual biocenoses was undertaken to glean valuable insights into the complexities of modeling dynamic ecosystems where artificial agents engaged in intricate interactions. The pivotal role of neural networks in shaping the adaptive behaviors of artificial creatures within these environments was underscored. A meticulous investigation into neural networks' evolution methodologies revealed the evolution of their architecture complexity over time, culminating in the facilitation of flexible and intelligent behaviors. However, a lack of study existed in the domain of nurturing evolutionary-based communication and cooperation capabilities within virtual biocenoses. In response to this gap, a model was introduced and substantiated through simulation experiments. The simulation results vividly illustrated the model's remarkable capacity to engender adaptive creatures endowed with the capability to efficiently respond to dynamic environmental changes. These adaptive entities displayed efficient optimization of energy consumption and resource acquisition. Moreover, they manifested both intellectual and physical transformations attributed to the evolution and encoding principles inspired by the NeuroEvolution of Augmented Topologies. Significantly, it became apparent that the evolutionary processes intrinsic to the model were inextricably linked to the environment itself, thus harmonizing seamlessly with the overarching goal of this research. Future research directions in this field were outlined. These pathways provided a foundation for further exploration into the evolution of artificial creatures in virtual biocenoses and the emergence of advanced communication and cooperation capabilities. These advancements hold the potential to move artificial life and artificial intelligence to new levels of understanding and capability.","PeriodicalId":391969,"journal":{"name":"Bulletin of National Technical University \"KhPI\". Series: System Analysis, Control and Information Technologies","volume":" 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE SCIENTIFIC BASIS, SOME RESULTS, AND PERSPECTIVES OF MODELING EVOLUTIONARILY CONDITIONED NOOGENESIS OF ARTIFICIAL CREATURES IN VIRTUAL BIOCENOSES\",\"authors\":\"Mykhailo Zachepylo, Oleksandr Yushchenko\",\"doi\":\"10.20998/2079-0023.2023.02.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aimed to gain a profound understanding of virtual biocenoses intricate digital ecosystems, with the goal of elucidating and replicating the emergence and evolution of intelligence in artificial creatures – referred to as noogenesis. A comprehensive analysis of existing studies within virtual biocenoses was undertaken to glean valuable insights into the complexities of modeling dynamic ecosystems where artificial agents engaged in intricate interactions. The pivotal role of neural networks in shaping the adaptive behaviors of artificial creatures within these environments was underscored. A meticulous investigation into neural networks' evolution methodologies revealed the evolution of their architecture complexity over time, culminating in the facilitation of flexible and intelligent behaviors. However, a lack of study existed in the domain of nurturing evolutionary-based communication and cooperation capabilities within virtual biocenoses. In response to this gap, a model was introduced and substantiated through simulation experiments. The simulation results vividly illustrated the model's remarkable capacity to engender adaptive creatures endowed with the capability to efficiently respond to dynamic environmental changes. These adaptive entities displayed efficient optimization of energy consumption and resource acquisition. Moreover, they manifested both intellectual and physical transformations attributed to the evolution and encoding principles inspired by the NeuroEvolution of Augmented Topologies. Significantly, it became apparent that the evolutionary processes intrinsic to the model were inextricably linked to the environment itself, thus harmonizing seamlessly with the overarching goal of this research. Future research directions in this field were outlined. These pathways provided a foundation for further exploration into the evolution of artificial creatures in virtual biocenoses and the emergence of advanced communication and cooperation capabilities. These advancements hold the potential to move artificial life and artificial intelligence to new levels of understanding and capability.\",\"PeriodicalId\":391969,\"journal\":{\"name\":\"Bulletin of National Technical University \\\"KhPI\\\". Series: System Analysis, Control and Information Technologies\",\"volume\":\" 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of National Technical University \\\"KhPI\\\". Series: System Analysis, Control and Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2079-0023.2023.02.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of National Technical University \"KhPI\". Series: System Analysis, Control and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2079-0023.2023.02.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE SCIENTIFIC BASIS, SOME RESULTS, AND PERSPECTIVES OF MODELING EVOLUTIONARILY CONDITIONED NOOGENESIS OF ARTIFICIAL CREATURES IN VIRTUAL BIOCENOSES
This research aimed to gain a profound understanding of virtual biocenoses intricate digital ecosystems, with the goal of elucidating and replicating the emergence and evolution of intelligence in artificial creatures – referred to as noogenesis. A comprehensive analysis of existing studies within virtual biocenoses was undertaken to glean valuable insights into the complexities of modeling dynamic ecosystems where artificial agents engaged in intricate interactions. The pivotal role of neural networks in shaping the adaptive behaviors of artificial creatures within these environments was underscored. A meticulous investigation into neural networks' evolution methodologies revealed the evolution of their architecture complexity over time, culminating in the facilitation of flexible and intelligent behaviors. However, a lack of study existed in the domain of nurturing evolutionary-based communication and cooperation capabilities within virtual biocenoses. In response to this gap, a model was introduced and substantiated through simulation experiments. The simulation results vividly illustrated the model's remarkable capacity to engender adaptive creatures endowed with the capability to efficiently respond to dynamic environmental changes. These adaptive entities displayed efficient optimization of energy consumption and resource acquisition. Moreover, they manifested both intellectual and physical transformations attributed to the evolution and encoding principles inspired by the NeuroEvolution of Augmented Topologies. Significantly, it became apparent that the evolutionary processes intrinsic to the model were inextricably linked to the environment itself, thus harmonizing seamlessly with the overarching goal of this research. Future research directions in this field were outlined. These pathways provided a foundation for further exploration into the evolution of artificial creatures in virtual biocenoses and the emergence of advanced communication and cooperation capabilities. These advancements hold the potential to move artificial life and artificial intelligence to new levels of understanding and capability.