{"title":"动态行为分析和集合学习用于信用卡损耗预测","authors":"Bolin Chen","doi":"10.47813/2782-2818-2023-3-4-0109-0118","DOIUrl":null,"url":null,"abstract":"Credit card attrition imposes a substantial business cost for financial institutions. Early and accurate prediction of customer churn allows banks to take proactive retention measures. However, modeling credit card attrition presents complex challenges given evolutionary customer spending behaviors. This paper puts forth a robust methodology harnessing dynamic behavior analysis along with ensemble learning to capture non-static patterns in transaction data. Explainability techniques further enable interpretation of attrition likelihood on an individual customer basis. Rigorous experiments demonstrate significant predictive performance improvements attained using the proposed approach.","PeriodicalId":427736,"journal":{"name":"Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic behavior analysis and ensemble learning for credit card attrition prediction\",\"authors\":\"Bolin Chen\",\"doi\":\"10.47813/2782-2818-2023-3-4-0109-0118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Credit card attrition imposes a substantial business cost for financial institutions. Early and accurate prediction of customer churn allows banks to take proactive retention measures. However, modeling credit card attrition presents complex challenges given evolutionary customer spending behaviors. This paper puts forth a robust methodology harnessing dynamic behavior analysis along with ensemble learning to capture non-static patterns in transaction data. Explainability techniques further enable interpretation of attrition likelihood on an individual customer basis. Rigorous experiments demonstrate significant predictive performance improvements attained using the proposed approach.\",\"PeriodicalId\":427736,\"journal\":{\"name\":\"Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47813/2782-2818-2023-3-4-0109-0118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47813/2782-2818-2023-3-4-0109-0118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic behavior analysis and ensemble learning for credit card attrition prediction
Credit card attrition imposes a substantial business cost for financial institutions. Early and accurate prediction of customer churn allows banks to take proactive retention measures. However, modeling credit card attrition presents complex challenges given evolutionary customer spending behaviors. This paper puts forth a robust methodology harnessing dynamic behavior analysis along with ensemble learning to capture non-static patterns in transaction data. Explainability techniques further enable interpretation of attrition likelihood on an individual customer basis. Rigorous experiments demonstrate significant predictive performance improvements attained using the proposed approach.