Yipu Liang, Sen Wang, Qihong Feng, Mengqi Zhang, Xiaopeng Cao, Xiukun Wang
{"title":"利用深度学习从 FIB-SEM 图像重建页岩数字岩石的超高分辨率图像","authors":"Yipu Liang, Sen Wang, Qihong Feng, Mengqi Zhang, Xiaopeng Cao, Xiukun Wang","doi":"10.2118/218397-pa","DOIUrl":null,"url":null,"abstract":"\n Accurate characterization of shale pore structures is of paramount importance in elucidating the distribution and migration mechanisms of fluids within shale rocks. However, the acquisition of high-resolution (HR) images of shale rocks is limited by the precision of the scanning equipment. Even with higher-precision devices, compromising the image field of view becomes inevitable, making it challenging to faithfully represent the actual conditions of shale. We propose a stepwise 3D super-resolution (SR) reconstruction method for shale digital rocks based on the widely used focused-ion-beam scanning electron microscope (FIB-SEM) technique. This method effectively addresses the issues of inconsistent horizontal and vertical resolutions as well as low 3D image resolution in FIB-SEM images. By adopting this approach, we significantly enhance image details and clarity, enabling successful observations of pores smaller than 10 nm within shale and laying a foundation for further pore-scale flow simulations. Furthermore, we extract the pore network model (PNM) from the SR reconstructed digital rock to analyze the pore size distribution, coordination number, and pore-throat ratio of shale samples from the Jiyang Depression. The results demonstrate a pore radius distribution in the range of 0 nm to 40 nm, which aligns with the results from nitrogen adsorption experiments. Notably, pores with radii smaller than 10 nm account for 50% of the total connected pores. The proportion of isolated pores in the SR reconstructed shale PNM is significantly reduced, with the coordination number mainly distributed between 1 and 4. The pore-throat ratio of shale ranges from 1 to 3, indicating a relatively uniform development of pores and throats. This study introduces a novel method for accurately characterizing the shale pore structure, which aids researchers in evaluating the pore size distribution and connectivity of shales.","PeriodicalId":22252,"journal":{"name":"SPE Journal","volume":"206 ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh-Resolution Reconstruction of Shale Digital Rocks from FIB-SEM Images Using Deep Learning\",\"authors\":\"Yipu Liang, Sen Wang, Qihong Feng, Mengqi Zhang, Xiaopeng Cao, Xiukun Wang\",\"doi\":\"10.2118/218397-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Accurate characterization of shale pore structures is of paramount importance in elucidating the distribution and migration mechanisms of fluids within shale rocks. However, the acquisition of high-resolution (HR) images of shale rocks is limited by the precision of the scanning equipment. Even with higher-precision devices, compromising the image field of view becomes inevitable, making it challenging to faithfully represent the actual conditions of shale. We propose a stepwise 3D super-resolution (SR) reconstruction method for shale digital rocks based on the widely used focused-ion-beam scanning electron microscope (FIB-SEM) technique. This method effectively addresses the issues of inconsistent horizontal and vertical resolutions as well as low 3D image resolution in FIB-SEM images. By adopting this approach, we significantly enhance image details and clarity, enabling successful observations of pores smaller than 10 nm within shale and laying a foundation for further pore-scale flow simulations. Furthermore, we extract the pore network model (PNM) from the SR reconstructed digital rock to analyze the pore size distribution, coordination number, and pore-throat ratio of shale samples from the Jiyang Depression. The results demonstrate a pore radius distribution in the range of 0 nm to 40 nm, which aligns with the results from nitrogen adsorption experiments. Notably, pores with radii smaller than 10 nm account for 50% of the total connected pores. The proportion of isolated pores in the SR reconstructed shale PNM is significantly reduced, with the coordination number mainly distributed between 1 and 4. The pore-throat ratio of shale ranges from 1 to 3, indicating a relatively uniform development of pores and throats. This study introduces a novel method for accurately characterizing the shale pore structure, which aids researchers in evaluating the pore size distribution and connectivity of shales.\",\"PeriodicalId\":22252,\"journal\":{\"name\":\"SPE Journal\",\"volume\":\"206 \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/218397-pa\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/218397-pa","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
Ultrahigh-Resolution Reconstruction of Shale Digital Rocks from FIB-SEM Images Using Deep Learning
Accurate characterization of shale pore structures is of paramount importance in elucidating the distribution and migration mechanisms of fluids within shale rocks. However, the acquisition of high-resolution (HR) images of shale rocks is limited by the precision of the scanning equipment. Even with higher-precision devices, compromising the image field of view becomes inevitable, making it challenging to faithfully represent the actual conditions of shale. We propose a stepwise 3D super-resolution (SR) reconstruction method for shale digital rocks based on the widely used focused-ion-beam scanning electron microscope (FIB-SEM) technique. This method effectively addresses the issues of inconsistent horizontal and vertical resolutions as well as low 3D image resolution in FIB-SEM images. By adopting this approach, we significantly enhance image details and clarity, enabling successful observations of pores smaller than 10 nm within shale and laying a foundation for further pore-scale flow simulations. Furthermore, we extract the pore network model (PNM) from the SR reconstructed digital rock to analyze the pore size distribution, coordination number, and pore-throat ratio of shale samples from the Jiyang Depression. The results demonstrate a pore radius distribution in the range of 0 nm to 40 nm, which aligns with the results from nitrogen adsorption experiments. Notably, pores with radii smaller than 10 nm account for 50% of the total connected pores. The proportion of isolated pores in the SR reconstructed shale PNM is significantly reduced, with the coordination number mainly distributed between 1 and 4. The pore-throat ratio of shale ranges from 1 to 3, indicating a relatively uniform development of pores and throats. This study introduces a novel method for accurately characterizing the shale pore structure, which aids researchers in evaluating the pore size distribution and connectivity of shales.
期刊介绍:
Covers theories and emerging concepts spanning all aspects of engineering for oil and gas exploration and production, including reservoir characterization, multiphase flow, drilling dynamics, well architecture, gas well deliverability, numerical simulation, enhanced oil recovery, CO2 sequestration, and benchmarking and performance indicators.